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1. Introduction

The Hubbard model is one of the most fundamental
one-dimensional model of interacting particles in a lat-
tice introduced to tackle the behaviour of correlated elec-
trons in solid. John Hubbard [1] (1931–1980) found the
model to be the simplest that produces both a metallic
and an insulating states of approximate behaviour of in-
teracting electrons in a solid, depending on the value of
on-site repulsion u. One of the most successful descrip-
tions of electrons in solids is though band theory. It is
based on reducing many-body interactions to an effec-
tive one-body description. The Hubbard model became
especially important as it showed that for half-filling the
Mott transition is reproduced, that could not be under-
stood in terms of conventional band theory. The Hub-
bard model is an extension of the so-called tight-binding
model, where electrons can hop between lattice sites as
independent particles.

The aim of the calculations is to determine the eigen-
basis adopted to the spin and the pseudo-spin symme-
tries for the case of the one-dimensional Hubbard model
with N atoms using the Schur–Weyl duality (SWD) [2].
SWD was introduced by Schur [3] and then further de-
veloped by Weyl [4], who showed that the Young sym-
metrizators of symmetric groups can be used to obtain
irreducible representations of a unitary group. This ap-
proach leads for the half-filling case to significance reduc-
tion of the eigenproblem of the one-dimensional Hubbard
Hamiltonian.

2. The model

The dynamics of the finite set of interacting electrons,
occupying the one-dimensional chain, consisted of N
atoms, can be described by the Hubbard Hamiltonian
in the following form
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H = t
∑
i∈2̃

∑
j∈Ñ

(c†jicj+1i + c†j+1icji) + u
∑
j∈Ñ

nj+nj−,(1)

where Ñ = {j = 1, 2, . . . , N} denotes the set of atoms of
the chain, 2̃ = {i = +,−}, nji = c†jicji, and finally c†ji, cji
are the canonical Fermi operators, that is creation and
anihilation operators of electron of spin i, on the site j.
The electron hopping in the Hubbard Hamiltonian can
only take place between nearest-neighbour sites, and all
hopping processes have the same kinetic energy.

The set of all linearly independent vectors called elec-
tron configurations [5, 6] provides the initial, orthonormal
basis of the Hilbert spaceH. These configurations are de-
fined by the following mapping

f : Ñ −→ 4̃, (2)
and constitute the N -sequences of the elements from the
set 4̃ = {±, ∅,+,−} as follows
|f〉 = |f(1)f(2) . . . f(N)〉 = |i1i2 . . . iN 〉,

ij ∈ 4̃, j ∈ Ñ , (3)
where ∅ denotes the empty node, + and − stand for one-
node spin projection equal to 1

2 and − 1
2 , respectively, ±

denotes the double occupation of the one node by two
electrons with different spin projections, with

4̃Ñ = {f : Ñ −→ 4̃}, H = lcC4̃Ñ . (4)

3. Symmetries of the model

Since the periodic boundary condition are assumed [7],
the Hamiltonian (1) has the obvious translational sym-
metry (cN+1i = c1i). This means that one-particle
Hamiltonian of the form (1) is completely diagonalised
by a Fourier transformation in the form

c†k =
1√
N

∑
j∈Ñ

exp(i2πkj/N)c†j , (5)

where

k = 0,±1, . . . ,

{
±(N/2− 1), N/2, for N even
±(N − 1)/2, for N odd

(6)
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labels the irreducible representations [5, 8] (irreps)
Γk(j) =

∑
j∈Ñ exp(i2πkj/N), j ∈ Ñ of the translational

symmetry group CN .
Apart from the cyclic symmetry, system reveals many

other, among them, for the half-filling of the elec-
trons, two independent SU(2) symmetries [7, 9], that
is SU(2) × SU(2) in the spin and pseudo-spin space.
This symmetry involves spin and charge degrees of free-
dom, and is related with four elementary excitation, that
is spinon 1

2 , spinon − 1
2 , with respect to the spin, and

holon, antiholon, with respect to the charge. The set
4̃ = {±, ∅,+,−} can be decomposed into two subsets,
where first 2̃′ = {±, ∅} is related with the left factor of
the direct product SU(2)× SU(2) of the unitary groups,
and the second set 2̃ = {+,−} is related with the right
factor, reflecting the invariance of H under the spin rota-
tion. Thus, one has two sets of generators, {Sz, S+, S−}
and {Jz, J+, J−}, for spin and charge, respectively.

4. The Schur–Weyl duality for one-dimensional
Hubbard model in the case of half-filling

The action
A : ΣN × 4̃Ñ −→ 4̃Ñ (7)

of the symmetric group ΣN [5] on the set 4̃Ñ provides
the orbits Oµ of the group ΣN labeled by the weight
µ, given as the sequence of non-negative integers µ =
(µ1, µ2, µ3, µ4), where the consecutive µi denote the num-
ber of ±, ∅, + and − in the electron configuration, respec-
tively, where

∑
i∈4̃ µi = N and µi = |{ij = i|j ∈ Ñ}|,

i ∈ 4̃. Such an orbit is invariant under the action of the
symmetric group ΣN and forms the carrier space of the
transitive representation RΣN :Σµ , with the stabilizer Σµ

being the Young subgroup Σµ = Σµ1
×Σµ2

×Σµ3
×Σµ4

,
where × denotes the Cartesian product.

Since there are two independent SU(2) symmetries one
can consider the action of the symmetric group ΣN — in
context of the Schur–Weyl duality [2, 10] — separately
in the spin and pseudo-spin space in order to obtain the
total spin S and the total pseudo-spin J . This observa-
tion holds for the system of any number N of atoms and
provides two symmetric group ΣN ′ and ΣN ′′ in the spin
and pseudo-spin space, respectively. The actions

A : ΣN × 4̃Ñ −→ 4̃Ñ , B : U(4)× 4̃Ñ −→ 4̃Ñ (8)
are replaced by

A′ : Σ′N × 2̃Ñ
′
−→ 2̃Ñ

′
, B′ : SU(2)× 2̃Ñ

′
−→ 2̃Ñ

′
, (9)

in the spin space Hs = lcC2̃Ñ
′

= h⊗N
′

s , where hs ∼= C2

denotes the one-node spin space, and

A′′ : Σ′′N × 2̃Ñ
′′
−→ 2̃Ñ

′′
, B′′ : SU(2)× 2̃Ñ

′′
−→ 2̃Ñ

′′
,

(10)
in the pseudo-spin space Hp = lcC2̃Ñ

′′
= h⊗N

′′

p , where
hp ∼= C2 denotes the one-node pseudo-spin space. The
spin and pseudo-spin spaces are isomorphic with Hilbert
space of the one-dimensional Heisenberg model for the
case of N ′ and N ′′ nodes of the spin chain, respectively.

Let us define some initial Hilbert space as follows

Hint =
⊕

(Ñ ′,Ñ ′′)

(Hs ⊗Hp) ,

Ñ ′ ∪ Ñ ′′ = Ñ , Ñ ′ ∩ Ñ ′′ = ∅, (11)

where N ′ and N ′′ denotes the cardinalities of the sets Ñ ′
and Ñ ′′, respectively, and (Ñ ′, Ñ ′′) stands for the pair
of these two sets–each taken in ascending order. The
last equations means that from now on we will label the
Hilbert space (4) by Hint. The space (11) can be de-
composed with respect to the number of electrons in the
system

Hint =

2N⊕
Ne=0

HNe , (12)

and further with respect to the number of electron with
fixed spin projection

HNe=
⊕

(N+,N−)=(0,0)

HNe(N+,N−), N++N−=Ne, (13)

where N+ and N− denote the number of electrons with
spin projection equal to 1/2 and −1/2, respectively.
Since the symmetry SU(2) × SU(2) holds only for half-
filling case the proper Hilbert space H for the case con-
sidered in the present paper is the subspace HNe=N ≡ H
of the initial space (11).

The actions (9) and (10) provide two transitive rep-
resentations RΣN′ :(Σµ3×Σµ4 ) and RΣN′′ :(Σµ1×Σµ2 ) in the
spin and pseudo-spin space, respectively, where Σµ

′
=

Σµ3
× Σµ4

and Σµ
′′

= Σµ1
× Σµ2

. Each transitive repre-
sentation decomposes as

RΣN′ :Σ
µ′ ∼=

∑
λ′≥µ′

Kλ′µ′∆
λ′ =

∑
λ′≥µ′

∆λ′ , (14)

into irreps of the symmetric group ΣN ′ , with the par-
tition λ′ ` N ′ defining the shape of the corresponding
irrep ∆λ′ , where Kλ′µ′ are the famous Kostka numbers,
equal to 1 in case of two-dimensional one-node space,
the sum runs over all partitions λ′ of N ′ which are not
smaller than µ′ in the dominance order, and N ′ denotes
the number of appropriate one-node spin spaces hs. For
the pseudo-spin space with N ′′ number of appropriate
one-node pseudo-spin spaces hp by analogy to (14) the
following decomposition holds

RΣN′′ :Σ
µ′′ ∼=

∑
λ′′≥µ′′

Kλ′′µ′′∆
λ′′ =

∑
λ′′≥µ′′

∆λ′′ , (15)

into irreps of the symmetric group ΣN ′′ , with the par-
tition λ′′ ` N ′′ defining the shape of the corresponding
irrep ∆λ′′ .

5.The example of the chain consisted
of six nodes

In the present paper we examine the example of the
chain with six nodes N = 6 at the half-filling, thus the
weights are as follows
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N ′ N ′′ N+ N− µ

6 0 6 0 (0, 0, 6, 0)

5 1 (0, 0, 5, 1)

4 2 (0, 0, 4, 2)

3 3 (0, 0, 3, 3)

2 4 (0, 0, 2, 4)

1 5 (0, 0, 1, 5)

0 6 (0, 0, 0, 6)

4 2 5 1 (1, 1, 4, 0)

4 2 (1, 1, 3, 1)

3 3 (1, 1, 2, 2)

2 4 (1, 1, 1, 3)

1 5 (1, 1, 0, 4)

2 4 4 2 (2, 2, 2, 0)

3 3 (2, 2, 1, 1)

2 4 (2, 2, 0, 2)

0 6 3 3 (3, 3, 0, 0)

(16)

The dimension of the initial Hilbert space Hint given by
the Eq. (11) for the case of the chain consisted of six
nodes N = 6 is equal to 4096 = 46. The dimension of
the proper Hilbert space given as the subspace HNe=N=6

of the initial Hilbert space can be calculated as follows

H = HNe=6 =
⊕

(N+,N−)=(0,0)

HNe=6
(N+,N−),

N+ +N− = 6. (17)
Thus the dimension of the Hilbert space H is equal to

dimH = dimH6
(6,0) + dimH6

(5,1) + dimH6
(4,2)

+dimH6
(3,3) + dimH6

(2,4) + dimH6
(1,5) + dimH6

(0,6)

dimH = 1 + 36 + 225 + 400 + 225 + 36 + 1 = 924.

(18)
The result above can be written as follows

26 +

(
2

1

)
(24)

(
6

4

)
+

(
4

2

)
(22)

(
6

2

)
+

(
6

3

)
,

since the multiplicity of deploying of N ′ spin atoms
and N ′′ pseudo-spin atoms on the chain consisted of
N = N ′ +N ′′ atoms is equal to

τ =

(
N

N ′

)
=

(
N

N ′′

)
.

The decomposition of the transitive representations of
the actions (9) and (10) of the symmetric group Σ6 into
irreducible representations provides the irreducible basis
with specified values of total spin S and the total pseudo-
spin J . For example, the total number of states for the
case of Sz = 1 and Jz = 0 (the ninth row of the sum-
mary (16)) can be calculated as follows

dim
[
(R{1

2} ⊗R{3 1})
]
× τ = (19)

dim
[
(∆{2} ⊕∆{1

2})⊗ (∆{4} ⊕∆{3 1})
]
× τ = 8× τ

where the first and the second transitive representations
correspond to the pseudo-spin and the spin space, re-
spectively, since N ′′ = 2 and N ′ = 4. The multiplicity of
deploying of N ′ spin atoms and N ′′ pseudo-spin atoms
on the chain consisted of N = N ′+N ′′ atoms is equal to
τ = 15, thus the number of states for the considered case
is equal to 120 and together with the number of states
for N ′ = 6 (N ′′ = 0) and N ′ = 2 (N ′′ = 4) for the same
Sz and Jz contributes to the number 225 of the Eq. (18).

6. Conclusions

We presented the application of the Schur–Weyl dual-
ity in the one-dimensional Hubbard model in the case of
half-filling for the example of six atoms. We introduced
the spin and pseudo-spin space in order to obtain the
total spin S and the total pseudo-spin J . We used the
concept of initial Hilbert space which provides the proper
Hilbert space of the considered system as its subspace.
The calculations are significant since the obtained results
lead to a significant reduction in the size of the Hubbard
Hamiltonian.
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