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The purpose of this work is to examine the reflection of a plane acoustic wave at normal incidence at the
boundary of equally flat medium of finite thickness. It separates two homogeneous semi-infinite media. We are
interested in the case where two external media have constant wave numbers, respectively k1 and k2, and that the
wave number k varies from k1 to k2 in a continuous and monotonic way. This is a problem that we solve by using
Mathieu’s functions.
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1. Introduction

The aim of this paper is to present examples of the
new application of the special functions to solving prob-
lems in the field of theoretical physics. In the process of
theoretical description of a physical phenomenon scien-
tists apply mathematical methods, which may facilitate
physical interpretation of the results obtained. Special
functions used in the theoretical physics were introduced
as a result of the search for the solutions of practical prob-
lems. The special functions, among other things Math-
ieu functions, have application to aspects of mechanical
waves related to cylinders, ellipses, and elliptical cylin-
ders, etc. These functions occur during the separation of
the variables in a wave equation (with partial derivatives)
in various co-ordinate systems. Propagation of a mechan-
ical wave in a liquid having variable wave number k is
found in practice quite frequently. This phenomenon is
described by a differential equation of variable coefficients
i.e. the Helmholtz equation with a variable wave num-
ber. This equation may be solved using various methods.
Solving equations of this type often poses significant dif-
ficulties. The foregoing considerations are different from
the ones presented in the literature. Our suggestion is
the following: also, a variable wave number, i.e. a k(x)
function may be applied, which — having satisfied the
assumptions — may result in a differential equation with
a known solution, i.e. the Mathieu equation.

2. Propagation of acoustic wave
in the acoustically non-homogeneous medium

Macroscopic non-homogeneity of a medium caused by
a difference in temperature may be expressed in the form
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of the wave equation. This equation has one parameter
characterizing the medium: velocity of wave propagation
c. This velocity is a function of temperature, whereas
the medium is acoustically heterogeneous. Propagation
of an acoustic wave in a liquid medium with a tempera-
ture gradient is found in practice quite frequently. This
subject was intensely studied in Great Britain, which has
always been a maritime power [1]. Acoustic signaling
is a significant aspect of navigation, as acoustic signals
carry information on the macrostructure of the sea. An
acoustically heterogeneous medium may be convention-
ally divided into layers inside which the temperature is a
function of (distance) height. In research of waves spread-
ing over the sea, the medium is assumed to be layered.
The phenomenon of acoustic wave propagation in a non-
homogeneous medium is described by a differential equa-
tion of variable coefficients. Solving equations of this
type often poses significant difficulties.

3. Wave reflection and transmission
in a liquid medium

with a temperature gradient

Acoustic plane wave propagates in a liquid medium
having variable wave number k (i.e. in a medium with a
temperature gradient) which separates two media of wave
numbers: k1 = const and k2 = const (i.e. of constant
temperatures), whereas k1 6= k2.

The media are linked with an intermediary layer, with
coefficient k(x) changing constantly and monotonically
from k1 to k2. This is an issue that we solve using the
Mathieu function. To calculate the reflection and trans-
mission of a wave in the above-described conditions, an
equation must be written for acoustic potential Φ(x) (as-
suming that it is a one-dimensional problem) and vari-
able wave number k(x), i.e. the Helmholtz equation with
a variable wave number. The Helmholtz equation with a
variable wave number may be solved using various meth-
ods. The problem has been formulated and solved by
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Brekhovskih [2]. Later, Jessel et al. showed that by
means of appropriate change of function, Helmholtz’s
variable-coefficient equation is split up into a pair of equa-
tions of the same type, but with constant coefficients in
which “virtual sources” appear containing the unknown
field [3]. By using Green’s function in expressing the solu-
tion, these equations can be transformed into an integro-
differential equation for the field and an integral equation
for the virtual sources. The latter equation was solved
numerically and hence the coefficient of reflection was
deduced. Our suggestion is the following [3]: also, a vari-
able wave number, i.e. a k(x) function may be applied,
which — having satisfied the aforesaid assumptions —
may result in a differential equation with a known solu-
tion, i.e. the Mathieu equation [4].

4. Mathematical description of the problem

In a liquid medium with a temperature gradient from
T1 to T2, a plane sinusoidal wave propagates vertically to
the boundary between the media, over distance d, with
wave numbers, respectively: in medium E1, E, E2:
E1, for x < 0 k(x) = k1 = const,
E, for 0 < x < d k(x) 6= const,
E2, for x > d k(x) = k2 = const.
For a plane sinusoidal wave spreading vertically to the
boundary between the media, its propagation is described
using three equations [3]:

• in the medium of a wave number k1:
ϕ′′(x) + k21ϕ(x) = 0, (1)

• in the medium of a variable wave number k(x):
ϕ′′(x) + k2(x)ϕ(x) = 0, (2)

where k2(x) = a− 2q cos(2x),

• in the medium with a wave number k2.
ϕ′′(x) + k22ϕ(x) = 0. (3)

5. Solution of the problem

Solutions of equations for E1, and E2 are known [2].
A solution for E adopts the form of the Mathieu func-
tion [4, 5], see Figs. 1 and 2. Constants are deter-
mined from the boundary conditions at the boundary
between the media, the continuity of acoustic pres-
sure, and the vibration speed for x = 0 and x = d.
The boundary conditions are a system of four equa-
tions with four unknowns: R,A,B, T , including the
wave reflection coefficient R (see Fig. 3 and Fig. 4)
at the boundary between the media in the situation
analyzed [3].

6. Discussion

The foregoing considerations are different from the
ones presented in the literature [1, 6] taking advan-
tage of the same method as the one used here. The
above-described method of solving the problem of wave

propagation in a non-homogeneous medium, in the con-
ditions described above, makes it possible to present the
results in an analytic form using the Mathieu function.
The case in question is a heterogeneous medium, of vari-
able wave number k(x), linking two homogeneous media
of constant wave numbers k1 and k2.

Fig. 1. Even periodic Mathieu functions.

Fig. 2. Odd periodic Mathieu functions.

Fig. 3. The coefficient of reflection of the wave R as a
function of distance d < 0.5 m for several values of the
wave frequency.
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Fig. 4. The coefficient of reflection of the wave R as a
function of distance d < 1.4 m for several values of the
wave frequency.

7. Examples of other applications
of the Mathieu function

• Analysis of the vibrations of water in a lake of an
elliptical outline. Assumptions: — movements of water
in a lake of constant depth d is stationary all over the
plane, — dependence of the vertical movement of water
particles ξ on time is eiωt, — water particle movement
ξ is small. The differential equation of movement is in
elliptical co-ordinates [4]. The solution to be found is
a combination of the Mathieu functions which represent
the deformation of water surface. Function ξ represents
the configuration of water surface at time t > 0. The
constants occurring in the solution are determined from
the initial conditions at t = 0.
• Analysis of the problem of the plane acoustic wave

propagation in a liquid medium in which there is an
obstacle — an elliptically shaped cylinder. If there is an
obstacle on the way of a spreading acoustic wave, acous-
tic scattering occurs. It is assumed that the obstacle,
e.g. an elliptically-shaped cylinder, is many times longer
than the larger axis of the ellipse. The axis of a long

elliptical cylinder of an elliptical cross-section is perpen-
dicular to the plane of the page. The medium flows
round the elliptical cylinder with velocity u in the direc-
tion forming angle v with the larger axis of the cylinder.
In this case, solving the diffraction problem requires the
use of elliptical co-ordinates, whereas the solution of the
wave equation in such co-ordinates includes the Mathieu
functions.

8. Conclusion

The applications of the Mathieu function to solving
acoustic problems may be divided into two main groups:

1. Solutions of the two-dimensional wave equation
written using elliptical co-ordinates;

2. Solutions of boundary conditions problems.

The majority of the applications of the Mathieu function
falls into the first group of the problems related to the
wave equation.
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