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In this paper the sound wave velocity in gases has been computed. Consideration has been given to the
statistical dependence of specific heat on the temperature. Thus instead of the classical formula where the thermo-
dynamic adiabatic exponent κ is a constant quantity, statistical expressions have been obtained. Numerical results
as well as a graph which presents the difference of results obtained by two methods are given and analytical results
are obtained and compared.
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1. Introduction

The work presented here concerns the issue of the prop-
agation of acoustic waves in gases at high temperatures.
The subject contains important aspects for modern avi-
ation and rocket technology [1]. The formula express-
ing acoustic wave velocity depends on the thermody-
namic adiabatic exponent κ, it is constant on low tem-
perature and is determined by the structure of the gas
molecules. In extreme conditions, e.g. high tempera-
ture, vibrations of the molecules play an important role.
In these cases the dependence of the acoustic wave ve-
locity on the temperature is complicated. For molecu-
lar acoustics it is important to determine the theoret-
ical velocity of acoustic waves c as a function of tem-
perature T . The equations of state can directly deter-
mine the dependence of c(T ) for various models of gases,
with the assumption that the gas is well above critical
state. In an ideal gas particles have the linear and ro-
tational kinetic energy, oscillation energy, and the exci-
tation energies of the electrons. Each one of types of
motion is activated after its characteristic temperature
is reached.

According to the principles of statistical physics the
specific heat cp and cν for gases depend on tempera-
ture and the adiabatic equation is not applicable in the
Clapeyron equation. The adiabatic equation can then be
written only in the integral form [2]. Translational mo-
tion is not quantized and the allowed energy levels form a
continuum. Rotational motion is quantized and the dis-
tance between the energy levels depends on the moment
of inertia of the particles. Oscillatory motion is quan-
tized, the distance between the energy levels depends on
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the masses of the atoms forming the molecule, and the
binding energy between them. Electron energy levels are
quantized [3].

Models of particles can be described by their degrees
of freedom f . This is the smallest number of general-
ized coordinates required to describe the motion of the
molecule. If n is the number of atoms in the molecule,
then the number of degrees of freedom is f = 3n. For a
single atom molecule these are the three translational de-
grees of freedom. Polyatomic molecules have three trans-
lational degrees of freedom, and two or three rotational
degrees of freedom, depending on whether the molecule
is linear or nonlinear. For linear molecules the number
of vibrational degrees of freedom is equal to 3n− 5. For
nonlinear molecules the number of vibrational degrees of
freedom is equal to 3n− 6.

Electronic excitations of molecules are present only at
temperatures of 104 K and will not be considered in this
paper. The occurrence of rotational excitations depends
on the ratio: θrot

T where θrot is the characteristic temper-
ature of rotation for a given molecule.

At room temperatures, it is assumed that every degree
of freedom of the molecules per mole of gas accounts for
heat equal to half the value of the universal gas constant
R. Then the value of κ depends only on the number of
degrees of freedom f : κ = f+2

f . At higher temperatures
the specific heat cannot be captured using the degrees of
freedom [4].

2. Description of a statistical method
for calculating the velocity of acoustic waves

According to the principles of statistical physics the
specific heat cp and cν for gases depend on tempera-
ture. The adiabatic equation can then be written as the
integral [2]:
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ln ρ =
1

R

∫
cν(T )

dT

T
+ const, (1)

where ρ is the density of the gas and R is the universal
gas constant.

Writing the first law of thermodynamics in the form
containing the adiabatic enthalpy equation we get in the
integral

ln p =
1

R

∫
cp(T )

dT

T
+ const, (2)

where p is the pressure of the gas.
The adiabatic acoustic wave velocity is the derivative

of the density of the pressure at constant enthalpy

c20 =

(
dp

dρ

)
s

=
cp(T )

cν(T )

p

ρ
= κ(T )

p

ρ
. (3)

Hence we obtain

c0 =

√
κ(T )

R

µ
T . (4)

The calculation uses the classical statistics of Maxwell–
Boltzmann [3], counting the quantum energy of gas
molecules. Finally,

c0 =

√
(1 +

R

cν(T )
)
R

µ
T (5)

where µ is the molecular mass.
For diatomic gases the statistical sum of the energies

of the states is affected by translational, rotational and
vibrational motion. In the case of hydrogen one must
also consider the influence of electron levels. The contri-
bution of the internal degrees of freedom to the partition
function Z is as follows [5]:

Z = ZtrZoscZrot, (6)
where partition function Ztr is the translational, Zosc is
the oscillatory function and Zrot is the rotational.

The translational partition is as follows:

Ztr =
∑
i

exp

(
− µν2i
2kT

)
=
V

h3
(2πµkT )

3
2 , (7)

where V is the volume of the area and k is the Boltzmann
constant.

The oscillatory partition function is calculated assum-
ing that the atoms in a diatomic molecule are harmonic
oscillators

Zosc =

∞∑
n=0

exp

(
−
(n+ 1

2 )hν

kT

)
, (8)

where h is Planck’s constant and ν is the frequency de-
noting the characteristic temperature oscillations,

θosc =
hν

k
. (9)

Summing over the geometric progression we find

Zosc =
exp(− θosc

2T )

1− exp(− θosc
T )

. (10)

The rotational distribution function is as follows [2]:

Zrot =
∑

n=0,2,4,...

(2n+ 1) exp

(
−(n+ 1)n

θrot
T
,

)
(11)

where the characteristic temperature of rotation is

θrot =
~2

2Ik
(12)

with I the moment of inertia of the molecule.
Rotational energy levels are (2n + 1) times degener-

ate. At high temperatures the summation of the discrete
values of n can be replaced by integration over the con-
tinuous values of n, resulting in

Zrot =
θrot
T
. (13)

Z for the diatomic molecule is given by

Z =
V

h3
(2πmkT )

3
2

exp
(
− θosc

2T

)
1− exp

(
− θosc

T

) T

θrot
. (14)

Knowing the distribution function Z we can calculate the
internal energy per mole U :

U = RT 2

(
∂ lnZ

∂T

)
ν

. (15)

The internal energy per mole is the sum of the internal
energies translation Utr, oscillation Uosc, and rotation
Urot:

U = Utr + Uosc + Urot. (16)
The specific heat of a gas at a constant volume

cν =

(
∂U

∂T

)
ν

. (17)

Finally, one obtains

cν = R

{
3

2
+

(
θosc
T

)2 exp( θoscT )[
exp

(
θosc
T

)
− 1
]2 + 1

}
. (18)

Substituting (18) into (4) we obtain the expression for
the statistical adiabatic acoustic wave velocity in a gas
of diatomic molecules

c20 =
RT

µ

[
1 +

1
5
2 + ξ2 exp ξ

(exp ξ−1)2

]
, (19)

where ξ = θosc
T .

Fig. 1. The acoustic waves velocity versus temperature
for nitrogen and oxygen obtained by statistical methods.
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Fig. 2. The acoustic waves velocity versus temperature
for air, where ckl is obtained by “classical” methods [6]
and cst is obtained by statistical methods.

Detailed calculations have been made for air (a mixture
of nitrogen and oxygen). The results of calculations are
presented in Figs. 1 and 2.

3. Conclusions

Summarizing the considerations presented here we
would like to first emphasize that the present issue has
important practical implications, especially in aviation
technology [7, 8]. On the basis of detailed calcula-
tions of the acoustic wave velocity in the air it was
concluded that even starting from a temperature of 300 K

there is a significant difference between the value rate cal-
culated by the formula: c0 =

√
κRµ T and by formula (5).

This difference increases with increasing temperature and
at a temperature 2000 K is of the order of several per-
cent. At a temperature of 2000 K the degree of dissoci-
ation of oxygen and nitrogen molecules is very small. It
can therefore be regarded as a diatomic gas.

However, if a large percentage of the gas molecules are
dissociated, the reported models no longer apply.
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