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1. Introduction

The Bose–Einstein condensation is a dramatic phe-
nomenon, where quantum mechanics emerge in a macro-
scopic scale. The Bose–Einstein condensates (BECs) pro-
vide rich variety of topics in condensed matter physics,
such as superfluidity, phase transition, symmetry break-
ing and so on [1–3]. These topics are strongly related to
other condensed matter physics such as superconductors
as well as magnetisms [1, 2]. The BEC is thus a cornu-
copia of basic concepts of condensed matter physics.

During a long history of the study of BECs, beautiful
identities have been shown [4–8]. These are related to the
gapless excitation [4], the infrared divergence of the lon-
gitudinal susceptibility [6, 7], which is strongly related
to the magnetism [9, 10], and the correspondence be-
tween sound speed of single-particle excitation and that
of the collective density excitation in a BEC [5]. On the
other hand, from a view point of a more practical ap-
proximation side, not only the difficult problem still re-
mains for the dilemma of the conserving-gapless approxi-
mation [11], but the treatment of the infrared divergence
is also difficult [12]. We furthermore still often encounter
gaps between known exact properties and approximation
frameworks that do not satisfy them.

This paper may serve as a bridge that connects
these gaps, by starting to introduce basic properties
of an ideal Bose gas. We then introduce exact re-
lations for an interacting condensed Bose gas, such
as the Hugenholtz–Pines relation [4], Nepomnyashchii–
Nepomnyashchii identity [6, 7], as well as the exact rela-
tions with respect to the density response function [5].
Finally, we discuss many-body approaches satisfying
these identities [13–15]. Development of approximation
frameworks for BEC is not completed, in the sense that
there is not a practical approximation satisfying all the
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exact relations in BECs. We hope that this paper helps
to guide readers towards theories on BECs, and is useful
for developing them.

2. Quantum statistical mechanics of bosons

An ideal classical gas is well described by the canonical
ensemble. At very low temperature, however, the treat-
ment of a classical gas is no longer valid. Its tempera-
ture scale is described by using one of the typical length
scales of a nonzero temperature system — the thermal
de Broglie length λT ≡ [2π~2/(mkBT )]1/2, where T is
the temperature, and m is an atomic mass of a gas [2].
When this thermal de Broglie length has the same or
longer length scale of the mean interatomic distance d,
i.e., λT & d, the treatment of the classical gas becomes
failure, and the quantum statistical mechanics is needed.

Indeed, the partition function Z of a three-dimensional
ideal classical gas is given by Z = ζN/N ! with the Boltz-
mann counting factor N !, where

ζ ≡ 1

h3

∫
dp

∫
dr exp (−βεp) =

V

λ3
T

. (1)

Here, β is the inverse temperature β = 1/(kBT ), εp ≡
p2/(2m) is a kinetic energy of a particle in a uniform
system, V is the volume of the system. The entropy S =
−∂F/∂T with the Helmholtz free energy F = −β−1 lnZ
is given by

S = kBN

[
5

2
+ ln

(
d

λT

)3
]
, (2)

where the mean interatomic distance d ≡ (V/N)1/3 [16].
Now that we may find that an unphysical negative en-
tropy is shown in the case λT & d, we should not consider
the classical gas treatment in this region. Instead, we
consider the quantum statistical mechanics for identical
particles at very low temperature kBT . 2π~2/(md2).

This statistics may be found by the symmetry of
the multiparticle wavefunction. The two-particle wave
function for two identical particles at a time t is given
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by Ψ(r1, r2; t). Since the two particles are identical, we
have a relation |Ψ(r1, r2; t)| = |Ψ(r2, r1; t)|. This gives
a symmetry relation [2]:

Ψ(r1, r2; t) = ±Ψ(r2, r1; t), (3)
where the upper sign is for boson with integer spin, and
the lower sign is for fermion with half-integer spin. In
contrast to the fermion case, where Ψ(r, r; t) = 0 for
r ≡ r1 = r2, which provides the anti-bunching effect,
the bosons may give Ψ(r, r; t) 6= 0, which provides the
bunching effect for bosons. The fermions obey the Pauli
exclusions principle, where a single quantum state cannot
be occupied by two or more fermions. On the other hand,
a single quantum state can be occupied by any numbers
of bosons.

In the grand canonical formulation, the Bose distribu-
tion function — the mean occupation number of a quan-
tum state i for boson — is given by [3]:

f(εi) =
1

exp(β(εi − µ))− 1
, (4)

where εi is an energy of a single-particle state i, and
µ is the chemical potential that satisfies ε0 > µ.
Here, ε0 is the lowest single-particle energy. Using
a density of states for a three-dimensional uniform
system

ρ(ε) ≡
∑
p

δ(ε− εp) =
V m3/2

√
2π2~3

√
ε, (5)

the number of particles without assuming the BEC is
given by

N =
∑
p

f(εp) =

∞∫
0

dερ(ε)f(ε) =
V

λ3
T

G3/2(z), (6)

where z is the fugacity z ≡ exp(βµ), and

Gα(z) ≡ 1

Γ (α)

∞∫
0

dx
xα−1

exp(x)z−1 − 1
=

∞∑
n=1

zn

nα
(7)

with the gamma function Γ (α).
By introducing the phase space density ρsd ≡ Nλ3

T /V ,
we have the relation ρsd = G3/2(z). Since the relation
εp=0 = 0 > µ holds, which leads 0 < z < 1, we have the
following relation in the limit z → 1, given by

ρsd =
N

V
λ3
T = G3/2(z → 1) = ζ(3/2). (8)

With lowering temperature or increasing density, how-
ever, we should have a high phase space density with
ρsd = Nλ3

T /V > ζ(3/2). In this case, the relation
N = λ−3

T V G3/2(z) is no longer valid, and we need to
reconsider the relation

N = f(εp=0) +
∑
p 6=0

f(εp) ≡ N0 +N ′. (9)

The second term with µ→ 0, i.e., z → 1, gives

N ′ =
∑
p 6=0

f(εp) = lim
δ→0

∞∫
δ

ρ(ε)f(ε) =
V

λ3
T

ζ(3/2), (10)

which is intensive, where N ′ increases proportionally
to V . The first term f(εp=0) with µ 6= 0 may be
negligible compared with the intensive second term
N ′ in the thermodynamic limit V → ∞. However, if
the chemical potential approaches to zero in the limit
V →∞ with the relation

µ = −kBT

n0V
, (11)

the number of particles occupying the lowest energy
state N0 = f(εp=0) may become intensive in the ther-
modynamic limit V,N → ∞ with N/V = const, which
provides f(εp=0) ' kBT/|µ| = n0V . The coefficient
n0 here is found to be the condensate density given by
n0 = N0/V . This is the Bose–Einstein condensation,
where the lowest energy state is macroscopically occu-
pied, and its critical temperature for an ideal Bose gas
T 0

c is given by

kBT
0
c ≡

2π~2

m

(
N

V

1

ζ(3/2)

)3/2

. (12)

3. Bogoliubov prescription

We now consider the non-zero temperature Green
function formalism. We start with a non-interacting
Bose gas, where the Hamiltonian is given by

Ĥ0 =

∫
dr

(
~2

2m
∇Ψ̂ †(r)∇Ψ̂(r)− µΨ̂ †(r)Ψ̂(r)

)
. (13)

Here, Ψ̂(r) and Ψ̂ †(r) are an annihilation and creation
operator of a bosonic atom at a spatial position r, satis-
fying a commutation relation [Ψ(r),Ψ †(r′)] = δ(r− r′).
The imaginary time Green function is a very powerful
tool for studying physics at nonzero-temperatures, which
is defined as:

G0(r, τ ; r′, τ ′) ≡ −〈Tτ Ψ̂(r, τ)Ψ̂ †(r′, τ ′)〉 (14)

≡ −Tr[exp(−βĤ0)Ψ̂(r, τ)Ψ̂ †(r′, τ ′)]

Tr[exp(−βĤ0)]
, (15)

where τ is the imaginary time. The real space repre-
sentation of the annihilation operator Ψ̂(r, τ) and its
momentum space âp(τ) are related through

Ψ̂(r, τ) =
1√
V

∑
p

exp

(
ip · r
~

)
âp(τ). (16)

The non-interacting Green function in the momentum
and the Matsubara frequency spaces is given by [17]:

G0(p, iωn) = −
~β∫
0

dτ exp(iωnτ)〈Tτ âp(τ)â†p(0)〉 (17)

=
~

i~ωn − εp + µ
, (18)

where Tτ is the time ordering operator, where the
operator at smaller imaginary time is ordered at the
right, and ωn = 2πn/(~β) with n ∈ Z is the bosonic
Matsubara frequency. This non-zero temperature for-
malism can be mapped to the absolute zero temperature
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case with the analytic continuation iωn → ω + iη with
an infinitesimally small number η. The pole of the Green
function G−1

0 (p) = 0 provides the dispersion relation
of the excitation, where the ideal gas case provides
~ω = εp − µ. By taking the sum of the Matsubara
frequency and using the counter integration, we obtain
the Bose distribution function for an ideal Bose gas,
given by [17]:

f(εp) = − 1

~β
lim
η→0

∑
n

exp (iωnη)G0(p, iωn) (19)

=
1

exp[β(εp − µ)]− 1
. (20)

One of the treatments for the Bose–Einstein conden-
sation is the Bogoliubov prescription, where the field
operator of the zero-momentum state is replaced by
a c-number, given by

Ψ̂(r) =
âp=0√
V

+
1√
V

∑
p(6=0)

exp(ip · r/~)âp (21)

→ Φ0 +
1√
V

∑
p( 6=0)

exp(ip · r/~)âp. (22)

Here, Φ0 is the condensate wave function, which is related
to the condensate density n0 and the phase ϕ0 through
Φ0 =

√
n0 exp(iϕ0).

Since the field operators of the zero-momentum part
satisfy [18, 19]:[

âp=0√
V
,
â†p=0√
V

]
=

1

V
, (23)

the error of the replacement of the operator with
the c-number may be given by O(1/V ), which is
expected to be negligibly small in the thermody-
namic limit V → ∞. In the BEC phase, the density
matrix ρ(1)(r1, r2) = N0/V − G0(r1, τ ; r2, τ + η)
has the off-diagonal long-range order, which can be
given by [3]:

lim
|r1−r2|→∞

ρ(1)(r1, r2) =
N0

V
. (24)

4. Identities of interacting condensed Bose gas

We now consider an interacting Bose gas, where the
Hamiltonian Ĥ is given by

Ĥ = Ĥ0 +
U

2

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (25)

The interaction strength U is related to an s-wave scat-
tering length a through a relation

4πa

m
=

U

1 + U
pc∑
p

1/(2εp)

, (26)

where pc is a cutoff momentum. In the BEC phase, we
apply the Bogoliubov prescription to the field operator.

In the Green function formalism, interaction effect is in-
cluded through the self-energy Σ(p), and the Green func-
tion in the BEC phase is given by the Dyson–Beliaev
equation, where [18, 19]:
G(p) = G0(p) +G0(p)Σ(p)G(p), (27)

with

G(p) =

(
G11(p) G12(p)

G21(p) G22(p)

)
,

Σ(p) =

(
Σ11(p) Σ12(p)

Σ21(p) Σ22(p)

)
, (28)

and G0(p) = diag(G0(p), G0(−p)).
We here note the lowest contribution ofG(p). By using

the Dyson–Beliaev equation, we have the infinite series of
the Green function G(p) = G0(p) +G0(p)Σ(p)G0(p) +
G0(p)Σ(p)G0(p)Σ(p)G0(p) + · · · , and the lowest con-
tribution of the normal Green function G11(p) is found
to be G11(p) ' G0(p) + · · · , which means that the first
order contribution is the non-interacting Green function,
which gives G11(p) = O(U0). On the other hand, the
lowest contribution of the anomalous Green function is
given by G12(p) ' G0(p)Σ12(p)G0(−p)+ · · · . In the low-
est contributions of the self-energy Σ12(p) = UΦ2

0 , we
can find that the anomalous Green function has G12(p) =
O(U1). The order of the contribution of the interaction
is different between the normal and anomalous Green
functions.

The Dyson–Beliaev equation gives the full-Green func-
tionG(p) = ~/[G−1

0 (p)−~Σ(p)], which provides [18, 19]:

G11(p) =
~

D(p)
[~ω + εp − µ+ ~Σ11(−p)], (29)

G12(p) = −~2Σ12(p)

D(p)
, (30)

where
D(p) ≡ [~ω − ~A(p)]2 − [εp − µ+ ~S(p) + ~Σ12(p)]

× [εp − µ+ ~S(p)− ~Σ12(p)] , (31)
with

A(p) ≡ [Σ11(p)− Σ11(−p)]/2, (32)

S(p) ≡ [Σ11(p) + Σ11(−p)]/2. (33)
Here, we used Σ11(p) = Σ22(−p) and Σ12(p) = Σ21(−p).
The same relation also holds for the Green function
Gij(p).

The Hugenholtz–Pines relation [13]:
µ = ~Σ11(0)− ~Σ12(0) (34)

ensures that an excitation of the single-particle excitation
in a BEC is gapless. Indeed, (34) gives the denominator
of (29) and (30) being zero, i.e., D(p = 0) = 0. This rela-
tion can be proven by various ways. One of the key ideas
of the proof comes from the fact that the energy of the
system is gauge invariant [4]. A key idea of another proof
comes from the linear response of the bosonic field op-
erator with respect to an infinitesimally small symmetry
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breaking external field [11]. Using the Hugenholtz–Pines
relation, the single-particle Green function in the low-
energy limit is given by [5]:

G(p) ' n0mc
2

n

~
~2ω2 − c2p2

(
1 −1

−1 1

)
, (35)

where c is the sound speed of the single particle excita-
tion in the low-energy limit, and n ≡ N/V is the total
number density of particles.

The sound speed c of the single particle excitation in
(35) is equal to the thermodynamic sound speed, given
by [5, 8]:

n

mc2
=

(
dn

dµ

)
T

. (36)

It indicates that the sound speed of the single-particle
excitation is equal to that of the density mode given by
the density-density correlation function [5, 8]:

χ(p) ' n

m

p2

~2ω2 − c2p2
. (37)

Indeed, the pole of this correlation function originally
comes from that of the single-particle Green func-
tion [5, 8]. These structures are specific to the BEC
system, and important points are (i) the single-particle
Green function is involved to the density correlation func-
tion because of the existence of the condensate, and (ii)
the single-particle Green function has a pole giving the
phonon dispersion relation, whose sound speed is the
same as the thermodynamic sound speed.

The Nepomnyashchii–Nepomnyashchii identity [6, 7]:
Σ12(0) = 0 (38)

is another identity, which is caused by the non-vanishing
weak infrared divergence of the higher order correlation
functions. This identity provides the weak infrared di-
vergence of the longitudinal susceptibility [8, 20], which
is also related to the fact that the main contribution
of the excitation in the low-energy limit is the phase
fluctuation.

In this paper, the details of the proofs for these exact
properties are not shown. However, some useful ideas for
them are summarized.

For the Hugenholtz–Pines theorem, it is important
that the system energy is gauge invariant, and the nor-
mal and anomalous self-energies in the limit p → 0 is
generated from the system energy E per volume by elim-
inating the condensate wave-function [4, 7]. In the BEC
phase, the system energy is given by the sum of the con-
nected diagrams constructed by G0(p) as well as Φ

(∗)
0 .

Since the system energy is gauge invariant, it does not
depend on the choice of the phase of the field operator as
well as the condensate wave function. Indeed, the normal
Green function G0(p) = −〈Tτ âp(τ)â†p(0)〉, which has the
same numbers of âp and â†p, is unchanged by the gauge
transformation (âp, â

†
p) → (exp(iϕ)âp, exp(− iϕ)â†p). In

order to keep the system energy gauge invariant, a cer-
tain contribution to the system energy should have the
same number of Φ0 and Φ∗0 , which means the system

energy is also unchanged by the gauge transformation
(Φ0,Φ

∗
0 ) → (exp(iϕ)Φ0, exp(− iϕ)Φ∗0 ). If a condensate

wave function Φ0 or Φ∗0 is eliminated from the energy
functional, a single vertex point of p = 0 is generated.
This idea can be easily extended to generating multi-
points vertex functions. Suppose that a certain contribu-
tion to the energy functional E(s) has Φ0 and Φ∗0 , whose
numbers are s, respectively. The normal self-energy is
generated by eliminating a single Φ0 from s possibilities
of Φ0 in E(s), and by eliminating a single Φ∗0 from s possi-
bilities of Φ∗0 in E(s). On the other hand, the anomalous
self-energy is generated by eliminating a single Φ∗0 from s
possibilities of Φ∗0 in E(s), and then eliminating a single
Φ∗0 from the remaining s − 1 possibilities of Φ∗0 . As a
result, we have relations

~Σ (s)
11 (0) =

s

Φ0

s

Φ∗0
E(s),

~Σ (s)
12 (0) =

s

Φ∗0

s− 1

Φ∗0
E(s), (39)

which leads
~Σ (s)

11 (0)− exp(− i2ϕ0)~Σ (s)
12 (0) =

s

n0
E(s). (40)

The right hand side, on the other hand, is given by [6]:
s

n0
E(s) =

∂E(s)

∂n0
≡ µ(s). (41)

By employing the Bogoliubov prescription, we may have
a term −µ0|Φ0|2 = −µ0n0 satisfying µ = µ0 in the origi-
nal energy Ē(T, µ, µ0). However, the contribution −µ0n0

is not generated from the energy functional constructed
by the Green function, which instead gives E(T, µ, n0) =
Ē(T, µ, µ0) +µ0n0. This is a kind of the Legendre trans-
formation, and we find dE = −SdT − pdV − n′dµ +
µ0 dn0, which gives µ = µ0 = ∂E/∂n0. After collecting
all the possible contributions with respect to s, we have
the Hugenholtz–Pines relation

~Σ11(0)− exp(− i2ϕ0)~Σ12(0) = µ. (42)
Since the phase of the condensate wave function is of-
ten taken as to be ϕ0 = 0, Eq. (42) can be reduced to
Eq. (34), where (34) is found to be a specific representa-
tion for Φ0 =

√
n0.

From (39), we can generate the relations [7]:

~Σ11(0) =
∂

∂n0

(
n0
∂E

∂n0

)
,

~Σ12(0) = e i 2ϕ0n0
∂2E

∂n2
0

. (43)

Since the phase ϕ0 may be taken arbitrary, we take the
average of self-energies for the phase of the condensate
wave-function, i.e., 〈Σij(0)〉 = (2π)−1

∫ 2π

0
dϕ0Σij(0). It

is clearly seen that the anomalous self-energy is gauge
dependent, and we can find 〈Σ12(0)〉 = 0 [14]. On the
other hand, the normal self-energy is gauge independent,
and 〈Σ11(0)〉 6= 0. It is also the case for the chemical
potential. This is one of the simplest ways for under-
standing the Nepomnyashchii–Nepomnyashchii identity
Σ12(0) = 0.
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This identity is also strongly related to the weak
infrared divergence of the longitudinal susceptibility,
where we introduce the longitudinal and transverse
susceptibilities [21, 22]:

χν(p) =

~β∫
0

dτ e iωnτ 〈Tτ âν,p(τ)âν,−p(0)〉. (44)

Here, â⊥,p = (âp − â†−p)/(2i), and â‖,p = (âp + â†−p)/2
are transverse and longitudinal operators, respectively.
The transverse fluctuation is consistent with the phase
fluctuation. Although the longitudinal operator may
be often referred to as the density fluctuation or the
amplitude fluctuation, those are not exactly the same
and the careful treatment of those operators are needed,
because the longitudinal operator â‖ = (â + â†)/2 has
the gauge dependence. The amplitude mode, known
as the Higgs mode, may be detected by the scalar
susceptibility, not the longitudinal susceptibility [23]. In
the low-energy regime, we have relations

χ⊥(0,p) ' n0m

n|p|2
, χ‖(0,p) ' 1

4Σ12(0,p)
. (45)

If the Nepomnyashchii–Nepomnyashchii identity
Σ12(0) = 0 holds, the infrared divergence of the
longitudinal susceptibility emerges.

The Popov hydrodynamic theory is known as an
absolute-zero temperature approximation that satis-
fies both the Hugenholtz–Pines relation and the
Nepomnyashchii–Nepomnyashchii identity [24–26]. In
this theory, the bosonic field operator Ψ̂(x) ≡√
n0 + π̂(x)e i ϕ̂(x) is expanded by hydrodynamic op-

erators π̂ and ϕ̂ [24–27], and the Green function
G is approximately given by the sum of correlation
functions Gπ̂π̂, Gπ̂ϕ̂, Gϕ̂π̂, Gϕ̂ϕ̂ as well as the convolu-
tion of Gϕ̂ϕ̂. By inversely solving the Dyson–Beliaev
Eq. (27) for Σ with the given G in the Popov hy-
drodynamic theory, we can find that the self-energy
satisfies both the Hugenholtz–Pines relation and the
Nepomnyashchii–Nepomnyashchii identity [26]. In this
formalism, the leading order contribution of the lon-
gitudinal susceptibility is the convolution of Gϕ̂ϕ̂ ∝
1/(~2ω2 − c2|p|2) [26]. This convolution in the low-
energy regime shows the weak infrared divergence,
given by [8]:

χ‖(p) ∝
∑
q

Gϕ̂ϕ̂(p+ q)Gϕ̂ϕ̂(q) (46)

∝

{
ln(c2|p|2 − ~2ω2) (T = 0),

1/|p| (T 6= 0).
(47)

As a result, the anomalous self-energy vanishes as Σ12 '
1/(4χ‖) ∝ |p| in the limit p→ 0 at T 6= 0.

Appearance of the convolution of the transverse-field
(or phase) correlation in the longitudinal susceptibility is
originated from the fact that the excitation in the low-
energy limit is exhausted by the transverse field (or the
phase of BEC), and the amplitude of the order-parameter
may not change in this limit [10]. Let Φ0 =

√
n0 be the

original field, and in the low-energy excitation with the
fluctuation, the field may be approximately given by

Φ′0 ' (
√
n0 + δΦ‖) exp(iδΦ⊥) (48)

' Φ0 + δΦ‖ + i
√
n0δΦ⊥. (49)

If the amplitude of the order parameter does not change
in the low-energy limit, i.e. |Φ′0|2 = |Φ0|2, we have a con-
dition

δΦ‖ ' −
√
n0

2
δΦ2
⊥. (50)

As a result, the leading order of the longitudinal correla-
tion function 〈δΦ‖δΦ‖〉 is given by the transverse fluctu-
ations, i.e, 〈δΦ2

⊥δΦ
2
⊥〉, which provides the convolution of

the transverse correlation function 〈δΦ⊥δΦ⊥〉. This story
is consistent with the infrared divergence of the longitu-
dinal susceptibility and that of the Popov hydrodynamic
theory.

The original derivation of the Nepomnyashchii–
Nepomnyashchii identity [6, 7] is different from those
approximation theories. The self-energies — two-point
vertices — can be generated from the three-point ver-
tices, where two of three vertex points are connected to
two single-particle Green functions, which are also con-
nected to an interaction line as well as a single conden-
sate line [7]. Although almost all infrared divergences are
canceled out by each other, some contributions remains,
which is the same contribution as that in (47) [7, 14].
On the other hand, as discussed in the topic of the
Hugenholtz–Pines identity, the vertex functions in the
zero-energy limit is generated from the system energy by
eliminating the condensate wave-functions. As a result,
three-point vertices in the low-energy limit can be related
to the two-point vertices (i.e. self-energies), and one can
obtain an equation with respect to the anomalous self-
energy. By solving this equation, one can find that the
anomalous self-energy vanishes in the zero-momentum
and zero-energy limits, which is caused by the inverse
of the weak-infrared divergence shown in (47) [7, 14].

As related to the fact that the self-energy in the zero-
energy limit can be generated from the energy functional,
the self-energy with the small but nonzero momentum
and that with the small but nonzero energy is also gener-
ated in the similar way [5]. The self-energy contribution
in the low-energy regime is thus related to the thermo-
dynamic quantities. Indeed, we have a relation [5]:
1

~

[
∂2Σ11(0)

∂ω2
−∂

2Σ12(0)

∂ω2

]
=

1

n0

∂2E

∂µ2
= − n

n0mc2
, (51)

where we have used relations n′ = −∂E′/∂µ, and
∂n′/∂µ = dn/dµ = n/(mc2). Here, c is the thermo-
dynamic sound speed. The thermodynamic functional is
constructed by the non-interacting single-particle Green
function G0, the condensate wave function Φ0 and Φ∗0 ,
as well as the interaction parameter U . If one increases
the energy of G0 with the infinitesimally small value, i.e.
G0(p) = ~/[~(ω + δω)− εp + µ], we may regard it as the
infinitesimally small increment of the chemical potential,
which provides the relation ~−1∂G0/∂ω = ∂G0/∂µ [5].
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The second derivative of the self-energy with respect to
the frequency can be thus related to the second deriva-
tive of the energy functional with respect to the chemical
potential. Using (34) and (51), one can show that the
sound speed of the single-particle excitation in the low-
energy limit is given by the thermodynamic sound speed,
as discussed in (36) and (37).

The density response function in the BEC phase is
constructed by two contributions, one-particle reducible
(1PR) part, and one-particle irreducible (1PI) part [5].
The 1PR part is specific to the BEC phase, given by

χ1PR(p) = Υ†(p)G(p)Υ(p), (52)
where Υ and Υ† are the density vertices that include the
single-particle Green function into the density response
function and vanish above the critical temperature. This
vertex is known to show the zero-frequency density ver-
tex identity [7]:

Υ(0) = 0, (53)
and the 1PR part in the low energy regime is given by [5]:

χ1PR(p) =
n

mc2
(~ω)2

(~ω)2 − c2p2
. (54)

This implies that limp→0 χ
1PR(0,p) = 0 [5]. On the

other hand, the 1PI part in the low-energy limit exactly
shows [5]:

χ1PI(0) = − n

mc2
. (55)

Since the density response function is the sum of the 1PR
and 1PI parts, i.e. χ = χ1PR + χ1PI, the compressibility
zero-frequency sum-rule χ(0) = −n/(mc2) is exhausted
by the 1PI part.

5. Many-body treatment

This section focuses on many-body approaches at non-
zero temperatures, such as the random-phase approxima-
tion, and the many-body T -matrix theory [13–15]. For
simplicity, we take the convention V = ~ = kB = 1 in
this section. It may be convenient to construct build-
ing blocks for many-body contributions from the single-
particle Green function in the Hartree–Fock–Bogoliubov–
Popov approximation (the Shohno model) [8], given by

g(p) =

(
g11 g12

g21 g22

)
=

1

iωnσ3 − ξp − Un0σ1
, (56)

where ξp = εp + Un0. Here, σ1,2,3 are the Pauli matri-
ces. This gives the Bogoliubov excitation — the gapless
phonon excitation in the low-energy limit — which cap-
tures properties of the exact single-particle Green func-
tion. One of the building blocks is the correlation func-
tion, given by [13–15]:

Π (p) = −T
∑
q

g(p+ q)⊗ g(−q), (57)

where ⊗ is the Kronecker product. Since the normal
and anomalous Green function has the opposite sign in
the low-energy regime, i.e., gij(p) ' (−1)i+jmc20/(ω

2 −
c20p

2), where the Bogoliubov phonon sound speed
is c0 =

√
Un0/m, the infrared divergence of this

correlation function Π has a simple structure, which can
be extracted by the following matrix [13–15]:

Π IR(p) = Π14(p)Ĉ, (58)
where

Ĉ =


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

 , (59)

with Π14(p) = −T
∑
q g12(p + q)g12(−q). The function

Π14 shows the same structure of the infrared divergence
in (47), where c is replaced by c0. The correlation func-
tion ΠR ≡ Π − Π IR converges to a finite value in the
low-energy limit.

Using this correlation function Π , the four point
vertex Γ and the regular part of the density response
function χR are respectively given by [13–15]:

Γ (q) =
U

1− UΠ (q)
, (60)

χR(q) =
1

2
〈f0|[Π (q) + Π (q)Γ (q)Π (q)]|f0〉, (61)

where 〈f0| = (0, 1, 1, 0) and |f0〉 = (0, 1, 1, 0)T. This
regular part does not show the infrared divergence and
converges to [13–15]:

χR(0) = − 1

U

1− UΠ ′(0)

2− UΠ ′(0)
, (62)

with

Π ′(0) ≡
∑
p

ε2p
E2

p

(
∂np
∂Ep

− 1 + 2np
2Ep

)
. (63)

The random-phase approximation (RPA) includes the
density fluctuation into the effective interaction, where
the effective interaction Ueff is given by [13, 15]:

Ueff(q) =
U

1− UχR(q)
. (64)

Using this interaction, we consider the self-energies as
Σ11(p) = (n0 + n′0)Ueff(0) + n0Ueff(p)

−T
∑
q

Ueff(q)g11(p− q), (65)

Σ12(p) = n0Ueff(p), (66)
where n′0 ≡ −T

∑
p g11(p)e iωnδ. Since χR(0)

does not show the infrared divergence, we find
Ueff(0) 6= 0. This random-phase approximation pro-
vides Σ12(0) = n0Ueff(0) 6= 0, which does not satisfy
the Nepomnyashchii–Nepomnyashchii identity.

The variant of this RPA, which satisfies the
Nepomnyashchii–Nepomnyashchii identity, is the simpli-
fied RPA (s-RPA), where we include the lowest order of
the contribution [13, 15]:

χ0
R(q) =

1

2
〈f0|Π (q)|f0〉. (67)

The effective interaction in this s-RPA is given by

U0
eff(p) =

U

1− Uχ0
R(p)

. (68)
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Self-energies are also given by replacing Ueff with U0
eff

in (65) and (66). Since χ0
R shows the infrared diver-

gence, the effective interaction U0
eff converges to zeros

U0
eff(0) = 0. As a result, the anomalous self-energy

satisfies the Nepomnyashchii–Nepomnyashchii identity
Σ12(0) = n0U

0
eff(0) = 0.

The many-body T -matrix (MBT) approximation is
given by [13]:

Σ11(p) = 2n0Γ11(p)− 2T
∑
q

Γ11(q)g11(−p+ q), (69)

Σ12(p) = n0Γ11(0), (70)
where Γ11 is the (1, 1)-element of the four-point vertex
Γ that is connected to the well-known ladder diagrams
above Tc.

The many-body effect is important for considering the
critical temperature shift from that of an ideal Bose
gas. The critical temperature of the Bose gas in a har-
monic trap is known to decrease by the repulsive inter-
action [28]. This fact can be imagined based on the local
density approximation. In this approximation, the crit-
ical temperature is a monotonically increasing function
of the peak-density at the center of a harmonic trap. In
the presence of the repulsive interaction, this density be-
comes lower, because the repulsive interaction tends to
exclude the other bosons. This scenario cannot be ap-
plied to a uniform Bose system, in the case where the
system volume and the number of particles are fixed.
The critical temperature in the uniform system may be
shifted by a repulsive interaction in the competition of
two effects; the depletion from BEC and the suppres-
sion of the fluctuation [29]. The depletion may make the
critical temperature lower, because the particles are ex-
cluded from the condensate by the repulsive interaction.
The suppression of the fluctuation may make the critical
temperature higher. In the first place, an ideal Bose gas
has a strong density fluctuation, and its compressibility
diverges. On the other hand, by the repulsive interac-
tion, the density fluctuation is suppressed, and the com-
pressibility in the repulsively interacting condensed Bose
system is finite with satisfying the zero-frequency com-
pressibility sum-rule. In the weakly interacting regime,
effect of the suppression of the fluctuation is dominant,
and the critical temperature increases due to the weak
repulsive interaction [30, 31]. In the strongly interact-
ing regime, effect of the depletion is dominant, and the
critical temperature decreases due to the strong repulsive
interaction [30, 31].

The critical temperature shift in the weak interaction
regime is often discussed by the following formula, given
by [32]:

∆Tc

T 0
c

= −2

3

∆nc(T 0
c )

n0
c

, (71)

where ∆Tc ≡ Tc − T 0
c , and ∆nc(T 0

c ) is the difference be-
tween the critical density of an interacting Bose gas and
that of an ideal Bose gas both at the critical temperature
of an ideal Bose gas T 0

c . This difference is given by

∆n0
c(T 0

c ) ≡ (72)

−Tc

∑
q

[
1

iωn − εq + Σ11(0)− Σ11(q)
− 1

iωn − εq

]
.

Here, we have used the Hugenholtz–Pines relation µ =
Σ11(0) at the critical temperature, and also used the
fact that the chemical potential is zero at T 0

c in an ideal
Bose gas. If we take the mean-field approximation, such
as the Hartree–Fock–Bogoliubov–Popov approximation
(the Shohno model), the self-energy Σ11 does not include
the frequency and momentum-dependence. As a result,
the right hand side of (72) vanishes, and the mean-field
type approximation cannot describe the critical tempera-
ture shift [32]. The critical temperatures in those approx-
imations are the same as that of an ideal Bose gas. In or-
der to study the critical temperature shift by the interac-
tion, the frequency or momentum dependent self-energy
is needed. The critical temperature shift in the dilute
limit is characterized by the following equation [32, 33]:

∆Tc

T 0
c

= c1an
1/3. (73)

The values c1 are summarized in Table I. The Monte-
Carlo simulation gives c1 ' 1.3 [29, 34]. The closet value
in our many-body approximation is c1 ' 1.1, which is
given by the RPA [13]. Many other values of c1 are sum-
marized in the review [33].

TABLE I

Critical temperature shift ∆Tc = c1an
1/3, evaluated by

numerical calculations: Monte-Carlo simulation [29, 34],
random-phase approximation (RPA), simplified RPA
(s-RPA), and many-body T -matrix theory (MBT) [13].

Monte-Carlo
[29, 34]

RPA
[13]

s-RPA
[13]

MBT
[13]

c1 1.3 1.1 2.1 3.9

The density response function can be constructed by
the RPA formalism, where the 1PI and 1PR parts are
respectively given by [15]:

χ1PI(p) =
χR(p)

1− UχR(p)
, (74)

χ1PR(p) = Υ†(p)G(p)Υ(p), (75)
where χR is given in (61), and the density vertices are
given by [15]:

Υ(p) =
√
−1[G1/2 + G†T̂γ(p)]A(p), (76)

Υ†(p) =
√
−1[G†1/2 + γ†(p)T̂G]A(p), (77)

with three point vertices γ(p) = Γ (p)Π (p)|f0〉 and
γ†(p) = 〈f0|Π (p)Γ (p). Here, we have introduced the
condensate Green function G1/2 ≡

√
−n0(1, 1)T, G†1/2 ≡√

−n0(1, 1), G1/2 =
√
−n0ηg, and G†1/2 =

√
−n0η

†
g. The

matrix T̂ and ηg are respectively given by [15]:
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T̂ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , ηg =


1 0

1 0

0 1

0 1

 , (78)

and η†g is the transpose of ηg. The vertex coefficient A(p)
may be given by [15]:

A(p) =
1

1− UχR(p)
. (79)

This is one of the ways to include infinite series of the se-
lected diagrams into the density response function in the
RPA manner for BEC. In this case, we find that this den-
sity vertex converges a non-zero finite value Υ(0) 6= 0,
which does not satisfy the zero-frequency density ver-
tex identity Υ(0) = 0. In order to satisfy the identity
Υ(0) = 0, we employ the simple replacement of the ver-
tex coefficient A(p) in (79) by [15]:

A(p) =
1

1− Uχ0
R(p)

. (80)

Since the one-loop approximation χ0
R shows the in-

frared divergence, A(p) vanishes in the low-energy limit,
which provides the zero-frequency density vertex identity
Υ(0) = 0 [15].

If the 1PI part is constructed by the in-
frared divergent one-loop approximation, i.e.,
χ1PI(p) = χ0

R(p)/[1 − Uχ0
R(p)], the 1PI part in the

low-energy limit is given by χ1PI(0) = −1/U . Using the
result of the sum-rule χ1PI(0) = −1/U = −n/(mc2), the
sound speed is given by c =

√
Un/m, which is unphysical

temperature-independent sound speed. The approxima-
tion (74) rather well reproduces the temperature-
dependent sound speed c =

√
−n/[mχ1PI(0)],

where [15]:

χ1PI(0) = − 1− UΠ ′(0)

3− 2UΠ ′(0)
. (81)

The self-energy in the simplified-RPA reproduces the
Nepomnyashchii–Nepomnyashchii identity [13]. How-
ever, the critical temperature shift c1 in this approx-
imation is over-estimated as shown in Table I. It will
be useful to control the self-energy contributions of the
Green function so as to satisfy the Nepomnyashchii–
Nepomnyashchii identity as well as to reproduce the rea-
sonable value of the critical temperature shift. One of the
idea is to construct the Green function similar to that of
the Popov hydrodynamic theory developed in the case at
T = 0 [14, 26].

In general, the interaction effect can be included to
the Green function by the Dyson–Beliaev Eq. (27), with
the reducible self-energy Σ . Another way is to use the
non-interacting Green function G0 with the irreducible
self-energy Σ ′, given by
G(p) = G0(p) +G0(p)Σ ′(p)G0(p), (82)

where

Σ ′(p) =
1

1−Σ(p)G0(p)
Σ(p). (83)

The hybrid version [14]:

G(p) = G̃(p) + G̃(p)Σ̃(p)G̃(p), (84)
is also possible, where G̃−1 = G−1

0 −Σa and Σ̃ = (1 −
ΣbG̃)−1Σb with Σ = Σa + Σb.

The approximation theory satisfying the
Nepomnyashchii–Nepomnyashchii identity is con-
structed by separating the self-energy into two parts:
one is the regular part Σ̃

R
, where the bare infrared di-

vergent contribution is not included, and the other is the
infrared divergent part Σ̃

IR
[14]. We include the regular

part into the Green function by the Dyson–Beliaev type
equation, i.e., Σa = Σ̃

R
. For example, the regular part

of the self-energy in the MBT approximation may be
given by [14]:

ΣR
11(p) = 2n0Γ

R
11(p)− 2T

∑
q

Γ11(q)g11(−p+ q) (85)

ΣR
12(p) = n0Γ

R
11(0), (86)

where ΓR
11 is the (1,1)-element of the four-point vertex

ΓR(p) =
U

1− UΠR(p)
, (87)

where ΠR = Π − Π IR. On the other hand, the infrared
divergent part Σ IR is included into Σ̃ within the first
order, i.e. [14]:

Σ̃(p) = Σb(p) = Σ̃
IR

(p). (88)
In particular, we take the infrared divergent part as [14]:

Σ IR(p) = −1

2
G1/2U〈f0|Π IR(p)|f0〉UG†1/2. (89)

The Green function in this prescription reproduces the
weak infrared divergent longitudinal susceptibility [14]:

χ‖(p) ' −
n0U

2Π14(p)

2[ΣR
12(p)]2

. (90)

Given the approximated Green function in the form
G = G̃+ G̃Σ̃G̃, we obtain the self-energy Σ by solving
the Dyson–Beliaev Eq. (27), given in the form [14]:

Σ = G−1
0 −

1

1 + Σ̃G̃
G̃−1. (91)

Since Σ̃ = Σ IR shows the infrared divergence, we have
Σ(0) = G−1

0 (0) = µ. It indicates that the present pre-
scription can reproduce the Hugenholtz–Pines relation,
as well as the Nepomnyashchii–Nepomnyashchii identity.
This formulation is consistent with the Popov hydro-
dynamic theory at T = 0, where the Green function is
given by the correlation functions of the hydrodynamic
variables.

6. Summary

In this paper, starting from the discussion of prop-
erties of an ideal Bose gas, exact relations in an in-
teracting condensed Bose gas are discussed. In par-
ticular, we focused on the Hugenholtz–Pines relation,
Nepomnyashchii–Nepomnyashchii identity, and the den-
sity response function. The Hugenholtz–Pines relation
is related to the gapless excitation of the single-particle
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excitation. The Nepomnyashchii–Nepomnyashchii iden-
tity gives a weak infrared divergence of the longitudinal
susceptibility. The zero-frequency compressibility sum-
rule is exhausted by the one-particle irreducible part of
the density response function. On the other hand, the
one-particle reducible part of the density response func-
tion, which is specific to the BEC, has the same pole of
the single-particle Green function, whose sound speed is
equal to that of the thermodynamic sound mode.

In the last part of this paper, we discussed the ap-
proaches of many-body approximations satisfying these
exact relations. We introduced two random phase ap-
proximations and the many-body T -matrix theory. We
discussed the critical temperature shift by the many-
body effect in these approximations, and the systematic
approach to reproduce the Hugenholtz–Pines relation,
Nepomnyashchii–Nepomnyashchii identity, as well as the
weak-infrared divergence of the longitudinal susceptibil-
ity. We also discussed the random phase approximation
for studying the density response function with satisfy-
ing the identity. There is not a many-body approxima-
tion satisfying all the exact relations in a Bose–Einstein
condensate (BEC). This paper will be useful for develop-
ing beyond mean-field theory of an interacting condensed
Bose system consistent with exact relations in BECs.
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