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In this short review, spin–charge conversion effects induced by spin–orbit interaction are discussed from the-
oretical viewpoints. Spin Hall effect is formulated in terms of a single response function of spin density for an
applied electric field, where the diffusion equation is not required for description and no ambiguity associated with
spin current arises. The spin–charge conversion effects meaning the mixing of the electric and magnetic fields lead
to various anomalous optical responses, such as negative refraction and directional dichroism, as shall be studied
in detail for the Rashba spin–orbit interaction case.
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1. Spin–charge conversion

Spin–charge conversion is the central concept of spin-
tronics. The spin Hall effect is written as a response of
current to the applied electric field E as

jks,j = θshεijkEi, (1)
with θsh being a constant. Here the flow of the spin
current js is in the j-direction and spin polarization
is along k-direction, θsh is a constant, and εijk is the
totally-antisymmetric tensor. For the inverse spin Hall
effect, formula connecting input and output currents,
ji = θishεijkj

k
s,j , was postulated in Ref. [1], for conve-

niently explaining experimental results, where j denotes
the observed electric current. The relation is of course
a phenomenological one, and physically not correct. For
instance, charge current is conserved while spin current
is not, so they cannot be related simply. Nevertheless,
the conversion formula is convenient to interpret experi-
mental results and is widely used.

The spin accumulation generated by an applied elec-
tric field in the presence of the Rashba spin–orbit inter-
action [2], argued originally by Dyakonov and Perel [3],
is called the Rashba–Edelstein effect [4]. Its inverse ef-
fect, the inverse Rashba–Edelstein effect, corresponds to
a charge current generation as a result of spin accu-
mulation, instead of spin current. The effect was ex-
perimentally observed for the case of interface Rashba
spin–orbit interaction [5] and discussed theoretically in
Ref. [6]. The apparent difference between the spin Hall
and Rashba–Edelstein effects is that the former describes
spin current, while the latter is discussed in terms of spin
accumulation.

Theoretically, the standard spin Hall effect and
Rashba–Edelstein effect arise from the spin–orbit interac-
tion having different symmetries, more precisely, whether
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they are even or odd in the momentum operator. For
spin–orbit interaction even in the wave vector, correla-
tion functions between currents, no matter whether they
are electric or spin, have finite spatially uniform com-
ponent, while for odd interaction, correlation function
between current and density has finite uniform compo-
nent. It may appear reasonable, therefore, to regard spin
Hall and Rashba–Edelstein effects as the effects gener-
ating spin current and spin density, respectively, by a
driving electric field.

This distinction is, however, physically meaningless as
spin density and spin currents are related to each other by
a continuity equation and spin density is induced when-
ever spin current is induced. Moreover, spin current rep-
resentation has a serious fundamental issue of being not
an observable. In other words, its definition is theoret-
ically not unique because it is a non-conserved current.
Observation of generated spin current is therefore carried
out only by detecting spin density like in Ref. [7]. Theo-
retically, spin Hall effect has been described by combining
spin Hall conductance, which relates spin current and ap-
plied electric field, and a diffusion equation for spin, de-
scribing the spin accumulation formed as a result of the
generated spin current. The diffusion equation is usually
treated phenomenologically, and the issue of the ambi-
guity of spin current is therefore smeared out in those
descriptions.

1.1. Spin continuity equation

The diffusion equation is equivalent to the continuity
equation

ṡα +∇ · jαs = Tα, (2)
where s and T denote induced spin density and spin
relaxation torque, respectively, and the divergence is
with respect to the spatial direction of flow. The re-
laxation torque is expressed as proportional to the in-
duced nonequilibrium spin density and spin relaxation
time τr as

(1215)
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T =
s

τr
. (3)

This relation, usually phenomenologically assumed, has
been justified in some cases [8, 9]. From Eqs. (2) and (3),
a steady nonequilibrium spin configuration is determined
by the balance of flow and relaxation of spin as

sα = τr∇ · jαs . (4)
Generated spin current is thus detectable by measuring
nonequilibrium spin accumulation. One must note, how-
ever, that definition of spin current is not unique, as we
can add any contribution δjαs to spin current and ∇·δjαs
to the relaxation torque without modifying the continu-
ity equation. In other words, the form of the spin current
and relation torque depends on the experimental detec-
tion scheme, but this fact is disregarded in phenomeno-
logical arguments.

1.2. Current–spin correlation formulation
of spin Hall effect

The relation (4) indicates that what is observed is not
spin current, but its divergence. The uniform component
of the response function of spin current for the applied
electric field does not therefore account for the observed
spin accumulation, but solving the diffusion equation is
necessary. It was recently demonstrated theoretically
that the spin Hall effect can be formulated by consid-
ering directly a response of spin density for the applied
electric field, namely, the correlation function of velocity
operator vi and spin σj [9]:

CijJS(q) ≡
∑
k

Tr(viG
r
k+qσjG

a
k), (5)

where Gr
k (Ga

k) is the retarded (advanced) electron Green
function for wave vector k at zero angular frequency and
q is an external wave vector. The analysis was carried
out for the spin–orbit interaction arising from random
impurities

Hso = λ

∫
d3rc†[(∇Vi(r)× p) · σ]c, (6)

where c and c† are electron field operators, p is elec-
tron momentum, λ is the strength of the spin–orbit in-
teraction, and Vi(r) is a point-like impurity potential,
Vi(r) = Viδ(r − Ri), where Vi is the strength. Ri is
random impurity position, of which we take the average
value. Using gradient expansion, the leading order con-
tribution of the response function CijJS(q) was shown to
be linear in q:

CijJS(q) = iλshεijkqk, (7)
where λsh is a constant proportional to λ. The spin Hall
effect is thus described as a spin density generated by an
electric field as
s = λsh(∇×E). (8)

This formula indicates that the spin accumulation is
formed at edges where the electric field and current are
spatially inhomogeneous, namely, boundaries are essen-
tial in the spin Hall effect [10] (Fig. 1). The spin accumu-
lation is consistent with conventional spin current expres-
sion, Eq. (1). In fact, in the present model, θsh = λsh/τ ,

where τ is elastic lifetime of electron. Thus the two ex-
pressions (1) and (8) satisfy the continuity Eq. (4) with
τr = τ . The relaxation time here coincides with τ because
spin relaxation is not taken into account here.

Fig. 1. Schematic figure describing the spin accumula-
tion given by Eq. (9). The spin accumulation is formed
at edges perpendicular to the applied electric field E,
and decays in the length scale of `s, the spin diffusion
length. A single Eq. (9) therefore describes the conven-
tional argument of spin Hall effect using spin current
conductivity and diffusion equation.

Experimental diffusive situation is described by includ-
ing electron diffusion ladder, resulting in

s = λsh

∫
d3r′[∇Ds(r − r′)]×E(r′). (9)

Here Ds(r) is the spin diffusion propagator, the Fourier
transform of

Ds(q) ≡
1

Dq2τ + 4
3γ
, (10)

where γ ≡ τ/τso represents the strength of spin re-
laxation, τso being the spin lifetime due to spin–orbit
interaction. Ds(r) decays exponentially in the length
scale of spin diffusion length (spin relaxation length),
`s = `/(2

√
γ), ` being the electron elastic mean free

path. The description provides direct relation between
the physical observable and the applied field without am-
biguity and is consistent with previous description using
the diffusion equation. In the above formulation, the ef-
ficiency of “spin current propagation” is equivalent to fer-
romagnetic susceptibility. Spintronics provides therefore
an electric means to measure susceptibility with spatial
resolution.

In this scheme, the inverse spin Hall effect needs to
be argued including the mechanism for “spin current
generation”. Spin pumping effect [11], one of the most
widely used mechanisms for spin current generation, was
recently reformulated in terms of the effective gauge
field that induces spin accumulation at the ferromagnet-
normal metal interface [12]. The inverse spin Hall effect
for the “spin current injection” by use of spin pumping ef-
fect is therefore described by the same response function
as the one for spin Hall effect, namely, CJS [9].
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2. Rashba spin–orbit interaction

In this section, we focus on the Rashba interaction and
explore in detail the effects of spin–charge conversion and
optical responses.

Fig. 2. Geometry of Rashba–Edelstein effect (E) and
the inverse effect (IE), represented by Eqs. (12), (14).

2.1. Spin–charge mixing and optical property

We consider a spin–orbit interaction linear in the elec-
tron’s momentum. For such an interaction to arise, spa-
tial inversion symmetry needs to be broken. The follow-
ing interaction, called the Rashba interaction, appears on
surfaces and interfaces:

HR = iαR · (∇× σ). (11)
Here a vector αR represents an effective electric field aris-
ing from broken inversion, and is perpendicular to the
interface or surface. The form of the interaction is the
one derived directly from the Dirac equation as a rela-
tivistic interaction, but the magnitude can be strongly
enhanced in solids having heavy elements compared to
the vacuum case. The Rashba interaction mixes elec-
tron’s spin and momentum in the plane perpendicular to
the Rashba vector αR, resulting in spin–charge conver-
sion effects. Evaluating the correlation function of spin
and electric current, a spin density induced by an exter-
nal electric field E was shown to be [13, 14] (Fig. 2):
sE(ω) = κE(ω)αR ×E(ω). (12)

Here ne is electron density, and the conversion efficiency
is κE(ω) = − e~ne

mα2
R
ImC(ω)

ω , where

C(ω) ≡ −4α̃R
2

ne
εF

×
∫

d3k

(2π)3

∑
σ=±

σfkσ|k ×αR|
(~ω + iη)2 − 4(k ×αR)2

, (13)

σ = ± denotes spin, α̃R ≡ αR ≡ mα
~2kF

, fkσ ≡
[eεkσ/(kBT )+1]−1 is the Fermi distribution function, εkσ
is the energy of electron, εF is the Fermi energy and η is
a damping parameter. The inverse effect is written as
jIE(ω) = iω~γκE(ω)αR ×B(ω), (14)

with the same parameter κE. The effects of Eqs. (12)
and (14) are called the Rashba–Edelstein effect and the
inverse Rashba–Edelstein effect, respectively.

The inverse Rashba–Edelstein effect is useful for elec-
trically detecting spin accumulation generated by spin
current injection [5]. The induced spin of Eq. (12) leads
to a magnetization ofME ≡ −~γsE, which gives rise to a
magnetization current jE ≡ ∇×ME = −~γκE∇×(αR×
E). This current and the inverse Rashba–Edelstein cur-
rent (14), written by use of the Faraday law as jIE =
~γκEαR × (∇ × E). The total current induced by the
applied electric field is therefore (as function of wave vec-
tor q):

(jIE + jE)i = i~γκE[qiαRj − qjαRi]Ej . (15)
This anti-symmetric conductivity linear in q indicates a
rotation of the polarization of the incident electric field
(directional circular dichroism). This effect acts only for
circularly-polarized light and is an example of so-called
natural optical activity, which is allowed when inversion
symmetry is broken.

2.2. Optical metamaterial

Another interesting feature of the Rashba interaction is
a response as a metamaterial. The combination of direct
and inverse Rashba–Edelstein effects results in a current
jIE·E ≡ iω~γκE(αR ×ME) = − iω(~γκE)2[αR × (αR ×
E)], which leads to reduction of the plasma frequency
in the plane perpendicular to αR. As a result, the con-
ductivity tensor in the long-wavelength (q → 0) limit is
(α̂R ≡ αR/αR):

σij(ω) =

ie2

ω + iη

ne
m

(
δij(1 + C(ω))− α̂Ri α̂RjC(ω)

)
. (16)

Choosing αR along the z-axis, the dielectric tensor

εij(ω) = δij +
1

ε0

i

ω
σij(ω)

reads

εzz = 1−
ω2
p

ω(ω + iη)
≡ εz,

εxx = εyy = 1−
ω2
p

ω(ω + iη)
(1 + C(ω)) ≡ ε⊥,

where ωp =
√
e2ne/ε0m is the bare plasma frequency.

The reduced plasma frequency in the xy plane is ωR ≡
ωp
√
1 + ReC(ωR) (ReC is negative in the frequency

range we are interested).
The frequency range between the bare plasma fre-

quency ωp and the reduced plasma frequency ωR is of par-
ticular interest, since the system is insulating in the direc-
tion of the Rashba field but metallic in the perpendicular
direction. Materials with such anisotropy are called hy-
perbolic because of their hyperbolic dispersion [15]. In
fact, choosing the wavevector q in the xz plane, the dis-
persion relation is c2q2 − ω2ε⊥ = 0 for Ey and

q2z
ε⊥

+
q2x
εz

=
ω2

c2
(17)

for Ex and Ez. The hyperbolic dispersion leads to the
following peculiar optical properties. When the interface
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Fig. 3. (left) Schematic illustration of the geometries
of electromagnetic wave incident on the Rashba system.
The incident wave vector, the wave vector in the Rashba
medium and the Poynting vector are denoted by qin,
q and s, respectively. (right) Dispersion curves for a
fixed angular frequency and the relation between the
wave vector q and the group velocity vg in the case of
hyperbolic dispersion. They have x-components in the
opposite directions, meaning negative refraction.

is parallel to the metallic plane, the incident light tends
to be refracted in the negative direction, since the metal-
lic nature in the xy-plane reflects the light. This behavior
is observed in the dispersion curve (Fig. 3,right), which
reveals that the x-component of the group velocity vg
is negative. The Poynting vector s also has a negative
x-component.

For a bulk Rashba material of BiTeI, the maximum
plasma frequency known so far is ωp = 2.5 × 1014 Hz
(corresponding to a wavelength of 7.5 µm) for ne = 8 ×
1025 m−3 and εF = 0.2 eV [16]. Using αR = 3.85 eV Åand
kF ∼ 0.1 Å−1, we have α̃R ∼ 1, and thus, C(ω) ∼ −0.4
for frequencies ω . ωp, resulting in ωR/ωp = 0.77
(ωR = 1.9 × 1014 Hz, corresponding to the wavelength
of 9.8 µm). Thus, hyperbolic behavior arises in the
infrared regime.

3. Magnetic Rashba conductor

The Rashba interaction breaking spatial inversion sym-
metry along the Rashba vector leads to various inter-
esting spin transport and optical responses as we have
seen. When the time reversal symmetry is broken in ad-
dition, other anomalous properties are expected. Here
we discuss such a optical property considering a mag-
netic Rashba conductor with magnetization M (or in
a magnetic field), which breaks the time-reversal sym-
metry. For the system lacking both spatial inversion
and time-reversal symmetries, asymmetric propagation
of light called the directional dichroism is allowed. We
demonstrate directional dichroism based on two different
approaches.

3.1. Linear response study of conductivity

Evaluating the conductivity at finite angular frequency
ω by a linear response theory, it was shown that the mag-
netization and the Rashba interaction induces a compo-
nent [13, 14]:

σMij =
e2neJsd
mεFkFω

[
E1(ω)(α̂R ×M) · q

[
δij − α̂Riα̂Rj

]
−E3(ω)

2

[
M⊥i (α̂R × q)j + (α̂R × q)iM⊥j

]]
, (18)

whereM⊥ =M − (M · α̂R)α̂R and E1 and E3 are coef-
ficient defined in Ref. [13]. Terms having diagonal com-
ponents linear in the wave vector q induce directional
dichroism when αR ×M is finite (in Eq. (18) we have
kept only the contribution to the directional dichroism).
Considering the case where the Rashba field is in the z di-
rection with the magnetization along the y-axis (Fig. 4),
the dispersion relation including Eq. (18) for the inci-
dent light in the xz plane having the electric field in the
y-direction reads

q ' ω

c

√
ε⊥ +

1

2

ω2
p

c2
JsdM

kFεFq
E13(q · uR), (19)

where E13 ≡ E1 + E3 and
uR ≡ (αR ×M), (20)

is a moment that governs the dichroism.

Fig. 4. Geometry of directional dichroism induced in
a conductor having the Rashba interaction and magne-
tization or magnetic field. The directional dichroism is
induced when a “scalar chirality” of the three vectors
q · (αR×M) is finite. The quantity uR ≡ (αR×M) is
an effective gauge field for light, or a toroidal moment.
It turns out that the same vector uR acts as a gauge field
for electron spin (spin gauge field) (Eq. (29)), inducing
a spin-polarized current j when dynamic.

3.2. Effective Hamiltonian of electromagnetic fields
The optical response can be studied based on an ef-

fective Hamiltonian for electromagnetic field calculated
by integrating out conduction electron in the imaginary-
time path integral formalism. It was demonstrated in
Ref. [17] that the effective Hamiltonian including the
magnetization to the linear order is

HR
EM = g

∫
d3ruR · (E ×B)

+λR

∫
d3r

∑
µν

QµνEµBν , (21)
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where Qµν ≡ M⊥µ αR,ν is the effective quadrupole mo-
ment, g and λR are constants and E and B are the elec-
tric and magnetic fields, respectively.

The first term of HR
EM has a clear physical meaning

of the Doppler shift. In fact, the vector 1
µE × B ≡ q

(where µ is the magnetic permeability of solids) is the
Poynting vector representing the momentum of the elec-
tromagnetic wave, and the vector interaction of Eq. (21)
is of the form representing the Doppler shift uR · q. The
vector uR therefore acts as an effective gauge field (vec-
tor potential) for electromagnetic waves, that induces an
intrinsic velocity of the medium. In multiferroic (insulat-
ing) systems, the vector product of electric polarization
p and magnetization, p ×M , has been discussed to in-
duce directional dichroism and the Doppler shift of light
based on a symmetry argument [18]. References [13, 17]
provided microscopic justification of this fact in the con-
ducting case with p replaced by E.

The Doppler shift picture is clearly seen from the equa-
tion of motion including the vector interaction (the first
term of Eq. (21)). In fact, the total electric and magnetic
fields defined from the equation of motion are [17]:

Etot = E +
1

ε0
(uR ×B),

Btot = B + µ0(uR ×E). (22)
The cross-correlation effect in magnetic Rashba conduc-
tor, therefore, is considered as a result of a Lorentz trans-
formation to a moving frame with velocity uR. We have,
using ∂B

∂t = −∇×E:
∂Etot

∂t
=
∂E

∂t
+

1

ε0
[(u ·∇)E −∇(u ·E)], (23)

which for plane waves with the wave vector k ⊥ E is
represented as a “covariant” derivative,

Dt ≡
∂

∂t
+

1

ε0
(u ·∇), (24)

which is expected for a flowing medium [19]. There-
fore, the electromagnetic cross-correlation effect shown
in Eq. (28) represents the Doppler shift because of a
medium flow with velocity uR.

3.3. Weyl-type spin–orbit interaction

We briefly mention the case of another spin–orbit
interaction
HW = −λW(p · σ), (25)

where λW is a coupling constant. We do not consider
magnetization here. Hamiltonian (25) breaks inversion
symmetry in any spatial directions but keeps the time-
reversal invariance. Such a system is called chiral [20].
The effective Hamiltonian for electromagnetic field in this
case is obtained as [21]:

HW
EB = gW

∫
d3r(B · Ė −E · Ḃ), (26)

where gW is a constant. The quantity on the right-hand
side is a measure of chirality of electromagnetic field. Us-
ing the Maxwell equation in vacuum, it reads

HW
EB = gW

∫
d3r[c2B · (∇×B) +E · (∇×E)]. (27)

The total fields read
Etot ≡ E −

gW
ε0
Ḃ = E +

gW
ε0

∇×E,

Btot ≡ B − µ0gWĖ = B − gW
ε0

∇×B. (28)

The chiral meaning of HW
EB is clear from these expres-

sions connecting E and ∇×E.

3.4. Effective gauge field for electron spin

The Rashba interaction (11), being linear in the elec-
tron’s momentum, can be approximated as a gauge in-
teraction to the linear order. Namley, HR = p ·(αR×σ),
where (αR × σ) plays a role of a gauge field. Being pro-
portional to the Pauli matrix, its effect becomes essential
in the spin-polarized case of metallic ferromagnets. We
consider the case of strong sd exchange coupling, where
the spin operator σ can be replaced by n, a unit vector
along the localized spin. We thus have an U(1) effective
gauge field for electron spin [22, 23]:

AR ≡ −
m

e~
(αR × n). (29)

Existence of a gauge field naturally leads to an effective
electric and magnetic fields

ER = −ȦR =
m

e~
(αR × ṅ),

BR = ∇×AR = −m
e~

∇× (αR × n). (30)

It was shown that electron spin relaxation induces a per-
pendicular component of effective electric field [24]:

E′R =
m

e~
βR[αR × (n× ṅ)], (31)

where βR is a coefficient representing the strength of spin
relaxation. For the case of strong Rashba interaction of
αR = 3 eV Å, as realized in Bi/Ag, the magnitude of the
electric field is |ER| = m

e~αRω = 26 kV/m if the angular
frequency ω of magnetization dynamics is 10 GHz. The
magnitude of relaxation contribution is |E′R| ∼ 260 V/m
if βR = 0.01. The effective magnetic field in the case
of spatial length scale of 10 nm is BR ∼ 260 T, and we
expect large spin Hall effect by applying an electric field
along the Rashba vector.

The Rashba-induced electric fields, ER and E′R, are
important from the viewpoint of spin–charge conversion.
In fact, results (30),(31) indicate that a voltage is gen-
erated by a dynamics magnetization if the Rashba in-
teraction is present. Importantly, this effect emerges
even from a spatially uniform magnetization precession,
in sharp contrast to the conventional adiabatic effective
electric field (spin motive force), arising from the com-
bination of spatial and temporal variations. In the case
of a thin film with the Rashba interaction perpendicular
to the plane and with a precessing magnetization, the
component ER ∝ ṅ has no DC component, while the
relaxation contribution E′R has a DC component per-
pendicular to n× ṅ ‖ n, where n× ṅ and n denote
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time-averages. The geometry of this current pumping ef-
fect, j ∝ E′R ∝ αR ×n (Fig. 5), is therefore the same as
the one expected in the case of inverse Edelstein effect,
conventionally discussed in terms of spin current.

Fig. 5. Schematic figure depicting Rashba-induced
spin electric and magnetic fields E′

R and BR generated
by magnetization precession in a junction of a ferromag-
net (F), a nonmagnetic spacer (N) and a heavy atom
layer (Bi), where the Rashba interaction is induced. The
component E′

R induces a current j for precessing mag-
netization vector n in the direction perpendicular to
both n × ṅ and Rashba field αR, and has DC compo-
nent as the average of n× ṅ is finite. ER ∝ ṅ has only
AC. The magnetic field component BR lies in-plane and
is expected to induce “giant” spin Hall effect (js) when
an electric field is applied perpendicular to the plane.

In the present form, Eqs. (30), (31), the Rashba-
induced electric field is a local quantity; a voltage is
generated by a direct contact between the Rashba in-
teraction and magnetization. It becomes long-ranged if
electron diffusion is taken into account as pointed out
recently [25], and the inverse Edelstein effect with an
Ag spacer layer, would be explained by the long-ranged
Rashba-induced voltage.

To detect the magnetic component, BR, which can be
of the order of 100 T, is essential for the confirmation of
gauge field scenario. In the setup of Fig. 5, BR is along
n. The field can therefore be detected by measuring “gi-
ant” in-plane spin Hall effect when a current is injected
perpendicular to the plane.

General relation between spin and charge dynamics in
the presence of spin–orbit interaction in two-dimensional
electron gas was discussed in Ref. [26]. Electric cur-
rent generation by spin dynamics with Rashba spin–orbit
interaction was theoretically discussed in the case of a
dot [27].

4. Summary

A theoretical overview of spin–charge conversion ef-
fects due to spin–orbit interactions has been presented.
We first argued that the spin Hall effect can be described
in terms of a single correlation function between physi-
cal spin density and electric current, avoiding ambiguity

of spin current and use of classical diffusion equation
in addition to linear response theory for spin current.
Spin–charge conversion effects indicates intriguing cross
correlation effects in electromagnetism, and these effects
are described universally by use of effective gauge fields.
What is striking is the fact that the effective gauge field
for electron spin, AR of Eq. (29), is identical (up to
numerical coefficients) to the one for photons, uR of
Eq. (20). Although allowed by symmetry, this is a non-
trivial fact indicating generality and usefulness of the
concept of effective gauge field.
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