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Many strongly correlated Fermi systems including heavy-fermion (HF) metals and high-Tc superconductors
belong to that class of quantum many-body systems for which the Landau–Fermi liquid theory fails. Instead,
these systems exhibit non-Fermi-liquid properties that arise from violation of time-reversal (T) and particle–
hole (C) invariance. Here we consider two most recent experimental puzzles, which cannot be explained neither
within the Landau–Fermi liquid picture nor can they be made intelligible by the approaches like the Hubbard
model and/or the Kondo effect, which are commonly used to spell out the typical non-Fermi-liquid behavior.
The first experimental puzzle is the asymmetric (with respect to bias voltage V ) tunneling conductance (more
specifically differential conductivity dI/dV , where I is the current) of HF metals like CeCoIn5 and YbRh2Si2
and Leggett theorem violation in overdoped copper HTSC oxides. The second puzzle is strange properties of
geometrically frustrated 2D magnets like herbertsmithite ZnCu3(OH)6Cl2, of which unusual properties are related
to the emergence of so-called quantum spin liquid formed from fermionic spinons — the quasiparticles which
substitute ordinary bosonic magnons in geometrically frustrated substances. It turns out that in both above
classes of compounds, the background Fermi liquid (quantum spin liquid in geometrically frustrated magnets and
electron liquid in other substances) is considered to undergo a transformation that renders a portion of its excitation
spectrum dispersionless, giving rise to so-called flat bands. The presence of a flat band indicates that the system is
close to a special quantum critical point, namely a topological fermion-condensation quantum phase transition. An
essential aspect of the behavior of a system hosting a flat band is that application of a magnetic field restores its
normal Fermi-liquid properties, including T- and C-invariance, thus removing above non-Fermi-liquid anomalies.
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1. Introduction

Many strongly correlated Fermi systems, notably those
electronic solids identified as heavy-fermion (HF) met-
als and high-Tc superconductors (HTSC), belong to a
new class of materials for which standard Landau–Fermi
liquid (LFL) theory no longer applies. Instead, the
systems demonstrate so-called non-Fermi-liquid (NFL)
properties, typically reflecting violation of time-reversal
and particle–antiparticle invariances (respectively T-
invariance and C-invariance). Measurement of tunneling
conductance provides a powerful experimental technique
for detecting these symmetry violations. Preservation of
T and C symmetries is inherent in LFL theory, which im-
plies that the differential conductivity formed from the
current I and bias voltage V is necessarily a symmetric
function of V . It has been predicted that the conductivity
becomes asymmetric for HF metals such as CeCoIn5 and
YbRh2Si2. As an underlying mechanism, it is posited
in these materials that the electronic system undergoes
a special kind of transformation: a portion of its single-
particle spectrum becomes dispersionless, forming a so-
called flat band and leading to the asymmetrical conduc-
tivity [1–4]. Emergence of a flat band implies that the
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system possesses a quantum critical point representing a
topological instability. This instability induces a topo-
logical fermion-condensation quantum phase transition
(FCQPT) [3, 5, 6] involving the phenomenon of fermion
condensation (FC). Importantly, application of a mag-
netic field B restores the usual Fermi-liquid properties,
i.e., the differential conductivity becomes a symmetric
function of V due to the reappearance of the T- and C-
invariances [1–3]. This behavior has been observed in
recent measurements of tunneling conductivity on both
YbRh2Si2 [7, 8] and graphene [9].

Analysis of the data [8, 9] provides an explicit demon-
stration of the restoration of symmetry. In a geometri-
cally frustrated magnet, spins are prevented from forming
an ordered alignment, so that even at temperatures close
to absolute zero they occupy a liquid-like state called a
quantum spin liquid (QSL). The herbertsmithite mineral
has been exposed as a S = 1/2 kagome antiferromagnet,
and recent experimental investigations have revealed its
unusual behavior [10–15]. The balance of electrostatic
forces for the Cu2+ ions in the kagome structure is such
that they occupy distorted octahedral sites. The mag-
netic planes formed by the Cu2+ S = 1/2 ions are in-
terspersed with nonmagnetic Zn2+ layers. In samples,
Cu2+ defects occupy the nonmagnetic Zn2+ sites between
the kagome layers with x ' 15% probability, thus in-
troducing randomness and inhomogeneity into the lat-
tice [16]. As we shall see, the starring role of impurities
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in formation of the QSL is not clearly understood. How-
ever, we suggest that the influence of impurities induced
by the homogeneity on the properties of ZnCu3(OH)6Cl2
can be tested by varying x. We note that the impuri-
ties can stabilize QSL as it is observed in measurements
on the verdazyl-based complex Zn(hfac)2(AxB1−x) [17].
The experiments made on ZnCu3(OH)6Cl2 have not
found any traces of magnetic order in it. Nor have
they found the spin freezing down to temperatures of
around 50 mK. In these respects, herbertsmithite is
the best candidate among quantum magnets to contain
the QSL described above [10–15]. These assessments
are supported by model calculations indicating that the
ground state of kagome antiferromagnet is a gapless spin
liquid [3, 6, 18–23].

On the other hand, the recent studies suggest that
there can exist a small spin-gap in the kagome layers that
stands in conflict to this emerging picture [16, 24, 25]
(see also Refs. [26–28] for a recent review). The re-
sults reported are based on both experimental findings
and their theoretical interpretation in the framework of
the impurity model. The experimental data involved
are derived from high-resolution low-energy inelastic neu-
tron scattering on ZnCu3(OH)6Cl2 single crystals. It
is assumed that the influence of the Cu impurity en-
semble on the observed properties of herbertsmithite
may be disentangled from that of the kagome lattice
geometry [16, 24, 25].

It is further assumed that the impurity ensemble may
be represented as a simple cubic lattice in the dilute limit
below the percolation threshold. The model then as-
sumes that the spin gap survives under the application
of magnetic fields up to 9 T [24], while in the absence
of magnetic fields the bulk spin susceptibility χ exhibits
a divergent Curie-like tail, indicating that some of the
Cu spins act like weakly coupled impurities [16, 24, 25].
The same behavior is recently reported in a new kagome
quantum spin liquid candidate Cu3Zn(OH)6FBr [29]. As
a result, we observe a challenging contradiction between
two sets of experimental data when some of them state
the absent of a gap, while the other present evidences in
the favor of gap.

In many common superconductors, the density ns of
superconducting electrons is equal to the total electron
density nt, as a manifestation of a well-known theorem
of Leggett [30, 31]. However, recent measurements on
overdoped copper HTSC oxides have demonstrated the
putatively anomalous behavior ns � nt, awaiting expla-
nation. In other words, the density of paired (superfluid)
charge carriers turns out to be much lower than that pre-
dicted by the standard theory of Bardeen, Cooper, and
Schriefer (BCS) for conventional superconductors, within
which ns is directly proportional to the critical tempera-
ture Tc over a wide doping range [32, 33]. Broadly speak-
ing, if no conventional explanation of this behavior can
be given, such a departure from BCS theory may occur
because the electronic fluid within the material is not a
normal Fermi liquid in the sense of Landau FL theory.

More specifically, the system may exhibit a FCQPT, be-
yond which some charge carriers form a fermion conden-
sate (FC) having very exotic properties [3, 6]. In particu-
lar, the Leggett theorem no longer applies [34], since the
T- and C-invariances are violated in systems exhibiting
a FC [3, 6, 35].

Also of special interest as possible expressions of new
physics are observations involving resistivity ρ and zero
temperature London penetration depth λ0 that indicate
a universal scaling property

dρ

dT
∝ λ20 (1)

for a large number of strongly correlated high-
temperature superconductors [36]. This scaling relation
spans several orders of magnitude in λ, attesting to the
robustness of the empirical law (1); indeed, the behavior
is similar to that documented in Ref. [37] and explained
in Ref. [38]. We shall show that the observed scaling is
simply explained by the emergence of flat bands formed
by fermion condensation [39, 40].

Here we are going to show that both above groups of
substances have one very important similarity — their
basic physical properties are determined by the fermion
condensate (and corresponding topological phase transi-
tion) emerging due to presence of the flat band in the
energy spectra of their fermionic quasiparticles.

2. Fermion condensation

For decades, the famous Landau–Fermi liquid (LFL)
theory [41] has been de facto the universal tool to de-
scribe the itinerant fermionic systems. It describes the
ensemble of interacting electrons and nuclei in a solid in
terms of a weakly interacting quasiparticle gas. This im-
plies that the elementary excitations behave like these
quasiparticles, determining the low-temperature physi-
cal properties of the system under consideration. The
quasiparticles have a certain effective mass M∗, which is
a parameter of the theory [41–43], being approximately
independent of external stimuli including temperature,
pressure, or an electromagnetic field. The LFL theory
cannot, however, explain experimental results related to
a strong dependence of the effective mass M∗ on tem-
perature or magnetic field, as observed in strongly cor-
related Fermi systems [3, 44]. At the same time, devi-
ations from LFL behavior are observed in the vicinity
of a FCQPT [3, 44]. These so-called non-Fermi-liquid
anomalies are generated by large value of the effective
mass (infinite at a FCQPT point; see [3, 6] for details).

We now outline the physical mechanism responsible
for the dependence of the Landau quasiparticle effec-
tive mass, M∗(B, T ), on magnetic field and tempera-
ture. Again, the key point is that upon approach to
the FCQPT from the LFL regime, the effective mass
begins to depend strongly on temperature T , magnetic
field B, and other external parameters such as the pres-
sure P [3]. In effect, this phenomenon is directly related
to the existence of an additional instability channel for
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the Landau–Fermi liquid, in addition to the well-known
Pomeranchuk instability channel (see e.g., Ref. [42]), the
new channel being activated when the effective mass ap-
proaches infinity.

To avoid unphysical situations related, for instance, to
the negativity of the effective mass, the system alters the
topology of its Fermi surface [5, 40], such that the effec-
tive mass acquires temperature and magnetic field depen-
dences [3]. To investigate the low-temperature transport
properties, scaling behavior, and effective massM∗(B, T )
of a fermionic enesemble, we adopt the model of homoge-
neous Fermi liquid. In that case, the description avoids
complications associated with the crystalline anisotropy
of solids [3], and the Landau equation for effective mass
M∗ of a quasiparticle, in the presence of a magnetic field
of strength B, now reads [3, 41]:

1

M∗(B, T )
=

1

M
+
∑
σ1

∫
pF · p
p3F

F (pF,p)

×∂nσ1(p, T, B)

∂p

dp

(2π)3
. (2)

In this expression, M is the bare mass, F (pF,p) is the
Landau interaction function, which depends here on the
Fermi momentum pF and momentum p, and nσ(p, T, B)
is the quasiparticle distribution function for spin pro-
jection σ. The quasiparticle interaction F (p,p1), as-
sumed here to be spin-independent, is phenomenologi-
cal, being chosen to provide the best fit to experiment,
and σ is the spin index. For simplicity, we assume
that the Landau interaction does not depend on tem-
perature so that the quasiparticle distribution has the
Fermi–Dirac form

nσ(p, T ) =

[
1 + exp

(
εσ(p, T )− µσ

T

)]−1

, (3)

in terms of the single-particle energy spectrum εσ(p, T ).
In the case under consideration, the chemical poten-
tial µ depends on the spin through the Zeeman split-
ting µσ = µ ± µBB, where µB is the Bohr magne-
ton. In the LFL theory, the single-particle spectrum
is obtained as a variational derivative of the system
energy E[nσ(p, T )]:

εσ(p, T ) =
δE[n(p)]

δnσ
.

In describing of strongly correlated fermion ensembles,
the choice of the shape and parameters of the interac-
tion function F (p,p1) is dictated by its possession of an
FCQPT [3]. Thus, the role of the Landau interaction is
to bring the system to the FCQPT point, at which the
topology of the Fermi surface is altered in such a way
that the effective mass acquires temperature and field
dependence [3]. The variational principle, applied to the
functional E[nσ(p, T )], leads to the following explicit ex-
pression for εσ(p, T ):

∂εσ(p, T )

∂p
=

p

M
−
∫
∂F (p,p1)

∂p
nσ(p1, T )

d3p1
(2π)3

, (4)

Equations (3) and (4) provide for self-consistent deter-
mination of εσ(p, T ) and nσ(p, T ), yielding in turn the
effective mass through pF/M∗ = ∂ε(p)/∂p|p=pF . At the
FCQPT point, Eq. (2) can be solved analytically [3]. At
B = 0, contrary to LFL case, where the effective mass is
approximately constant, M∗ now becomes strongly tem-
perature dependent, demonstrating the NFL behavior

M∗(T ) ' aTT−2/3. (5)
At finite T , the system undergoes a transition to the LFL
region of the phase diagram, and being subjected to the
magnetic field, exhibits the behavior

M∗(B) ' aBB−2/3 (6)
of the effective mass.

The introduction of “internal” (or natural) scales
greatly simplifies analysis of the problem under consider-
ation. We first observe that near the FCQPT, the solu-
tion M∗(B, T ) of Eq. (2) reaches its maximal value M∗

M
at certain temperature TM ∝ B [3]. Hence, to measure
the effective mass and temperature, it is convenient to
introduce the scalesM∗

M and TM , respectively. This gen-
erates the normalized effective massM∗

N = M∗/M∗
M and

temperature TN = T/TM . Close to the FCQPT, the nor-
malized solutionM∗

N (TN ) of Eq. (2) is well approximated
by a simple universal interpolating function [3]. The in-
terpolation occurs between the LFL and NFL states, re-
flecting the universal scaling behavior of M∗

N [3]:

M∗
N (y) ≈ c0

1 + c1y
2

1 + c2y8/3
. (7)

Here y = TN = T/TM and c0 = (1 + c2)/(1 + c1), where
c1 and c2 are free parameters. The magnetic field B
enters Eq. (2) only in the combination µBB/T , making
TM ∼ µBB. It follows from Eq. (7) that

TM ' a1µBB, (8)
where a1 is a factor and µB is the Bohr magneton. Thus,
in the presence of a magnetic field the variable y becomes
y = T/TM ∼ T/µBB. Based on Eq. (8) we may conclude
that Eq. (7) describes the scaling behavior of the effec-
tive mass as a function of T and B. Thus the curves
M∗
N at different magnetic fields B merge into a single

one when expressed in terms of the normalized variable
y = T/TM . Since the variables T and B enter sym-
metrically, Eq. (7) also describes the scaling behavior of
M∗
N (B, T ) as a function of B at fixed T .

3. Thermodynamic properties
of geometrically frustrated magnets

To analyze theoretically the QSL in herbertsmithite
and other geometrically frustrated magnets, we em-
ploy the strongly correlated quantum spin liquid (SC-
QSL) [3, 18, 20, 23] model. A simple kagome lattice
may host a dispersionless topologically protected branch
of the quasiparticle spectrum with zero excitation en-
ergy, known as a flat band [3, 5, 18, 23]. In that case
the FCQPT can be considered as a quantum critical
point (QCP) of the ZnCu3(OH)6Cl2 QSL composed of
fermions — spinons — with zero charge, occupying the
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corresponding Fermi sphere with the Fermi momentum
pF and the effective massM∗ [3, 5, 6]. Consequently, the
properties of geometrically frustrated magnets coincide
with those of heavy-fermion metals with one exception,
namely the typical insulator resists the electric current
flow [18–20].

Fig. 1. Schematic SCQSL phase diagram in the
“temperature-magnetic field” representation. Vertical
and horizontal arrows show LFL-NFL and NFL-LFL
transitions at fixed B and T , respectively. The hatched
area represents the transition region at T = T ∗(B), see
Eq. (9). The solid line in the hatched area represents the
function T ∗(B) ' TM (B) given by Eq. (8). The func-
tions W (B) ∝ T ∝ T ∗ and TW (B) ∝ T ∝ T ∗ shown
by two-headed arrows define the width of the NFL state
and the transition area, respectively. At FCQPT point
(origin) the effective mass M∗ diverges and both W (B)
and TW (B) tend to zero.

The above information permits us already to construct
the schematic phase diagram in terms of SCQSL. It is
reported in Fig. 1. For simplicity we assume that at
T = 0 and B = 0 the system is approximately located
at FCQPT without tuning. The external stimuli B and
T are indeed the control parameters, shifting the system
from FCQPT and driving it from the NFL to LFL re-
gions as shown by the vertical and horizontal arrows. At
fixed temperatures the increase of B drives the system
along the horizontal arrow from the NFL to LFL region.
At fixed magnetic field and increasing temperatures the
system transits along the vertical arrow from the LFL
to the NFL part of the phase diagram. The hatched
area indicating the transition region, separates the NFL
and LFL states. The transition temperature T ∗(B)
is given by

T ∗(B) ' TM (B), (9)
which directly follows from Eq. (8). The solid line rep-
resents the condition T ∗(B) ' TM (B). Referring to
Eq. (9), this line is defined by the function T ∗ ∝ µBB,
and the width W (B) of the NFL state is seen to be pro-
portional to T . In the same way, it can be shown that the
width TW (B) of the transition region is also proportional

to temperature [3]. We note here that in essence the tran-
sition region represents the crossover between LFL and
NFL phases. In our case, the NFL phase is formed by
quasiparticles that occupy the FC state, in analogy to the
Bose condensate for particles obeying the Bose–Einstein
statistics, see Ref. [6] for a comprehensive explanation.
In a “pure” FC state, all fermions (quasiparticles) having
momenta in a finite interval embracing the Fermi surface
have energies pinned to the chemical potential. In real-
ity this state cannot be reached because of the Nernst
theorem [45], and the NFL features arise from “traces”
of the FC state manifested at finite temperatures. Also,
at low but finite temperatures, the magnetic field sup-
presses NFL behavior (i.e., the “FC traces”) and, on grow-
ing sufficiently strong, restores the LFL phase. On the
other hand, thermal fluctuations destroy LFL behavior
and generate NFL features related to the FC state.

Fig. 2. Measured temperature dependence of the mag-
netic susceptibility χ of ZnCu3(OH)6Cl2 from Ref. [10]
at magnetic fields shown in the legend. Illustrative val-
ues of χmax and Tmax at B = 3 T are also shown. A the-
oretical calculation at B = 0 is plotted as the solid line,
which represents χ(T ) ∝ T−α with α = 2/3 [6, 18, 21].

To examine the impurity model of herbertsmithite (see
above) in a broader context, we first refer to the exper-
imental behavior of its magnetic susceptibility χ. It is
seen from Fig. 2 that the magnetic susceptibility diverges
as χ(T ) ∝ T−2/3 in magnetic fields B ≤ 1 T, as shown
by the solid line. In the case of weakly interacting im-
purities it has been suggested that the low-temperature
behavior of χ can be approximated by a Curie–Weiss
law [16, 24, 25], i.e., χCW(T ) ∝ 1/(T + θ), with θ a
vanishingly small Weiss temperature. However, given
the documented behavior χ(T ) ∝ T−2/3 at low B, the
Curie–Weiss approximation is in conflict with both ex-
periment [10] and theory [6, 18, 20]. Moreover, as seen
in Fig. 3, the normalized spin susceptibility behaves like
the normalized heat capacity extracted from the mea-
surements on YbRh2Si2 in high magnetic fields [46].
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Fig. 3. Normalized susceptibility χN = χ/χmax = M∗
N

versus normalized temperature TN (see Eq. (7)) ex-
tracted from the measurements reported in Fig. 2. The
normalized specific heat (C/T )N = M∗

N is extracted
from the measurements of C/T on YbRh2Si2 in mag-
netic fields B (legend) [46]. Our calculations made at
B ' B∗ when the quasiparticle band is fully polarized
are depicted by the solid curve tracing the scaling be-
havior of M∗

N [6, 20].

This observation confirms the absence of the spin gap
in ZnCu3(OH)6Cl2 and the consequent invalidity of the
impurity model, which artificially separates the contri-
butions coming from the impurities. Within the frame-
work of the impurity model, the calculated intrinsic
spin susceptibility of the kagome plane is decomposed as
χkag(T ) = χ(T )− χCW(T ), leading to χkag(T → 0) → 0
and the erroneous claim that a putative gap has been
detected [25]. Thus, we must conclude that the impurity
model is untenable, since it cannot explain the empiri-
cally established behavior χ(T ) ∝ T−2/3 [10]. To explain
the observed behavior of χ, it is necessary to consider
the impurities embedded in the kagome planes of a host
crystal as an integral system [3, 6, 18–21, 23, 47, 48] that
acts coherently to produce additional frustration of the
kagome planes, so as to make the QSL robust at lower
temperatures. Based on this analysis, we predict that the
QSL of quantum magnets can be stabilized introducing
a random distribution of impurities.

In a similar vein, working within the impurity model,
the authors of Ref. [16] obtain a measure Skag(ω) =
Stot(ω) − aSimp(ω) of the intrinsic scattering. This has
been done by subtracting the impurity scattering contri-
bution Simp(ω) from the total scattering Stot(ω), taking
a as a fitting parameter. On finding that Skag(ω) goes
to zero as ω decreases below the energy of 0.7 meV (see
Fig. 4b of Ref. [16]) they assert the existence of a gap.
However, as we have demonstrated above, such a sub-
traction leads to the erroneous conclusion that a putative
gap has been found. Indeed, this conclusion relies com-
pletely on the theoretical assumption that the impurities
are weakly interacting; accordingly, it cannot be consid-
ered as empirically authenticated, since the subtraction

hypothesis is negated by the experimental behavior sum-
marized in Fig. 2. All relevant experimental observations
are consistent with the hypothesis that the properties of
ZnCu3(OH)6Cl2 under study are determined by a stable
SCQSL: (i) there is no appreciable gap in the spectrum
of spinon excitations, such a gap being absent even under
the application of high magnetic fields of 18 T, and (ii)
the impurity model is untenable from the experimental
standpoint.

4. Asymmetric conductivity
of heavy-fermion compounds

Direct experimental studies of quantum phase transi-
tions in HTSC and HF metals are of great importance for
understanding the underlying physical mechanisms re-
sponsible for their anomalous properties. However, such
studies of HF metals and HTSC are difficult since the
corresponding critical points are usually concealed by
the proximity to other phase transitions, commonly an-
tiferromagnetic and/or superconducting. Recently, ex-
traordinary properties of tunneling conductivity in the
presence of a magnetic field were observed in a graphene
preparation having a flat band [9], as well as in HTSC’s
and the HF metal YbRh2Si2 [7, 8].

Most of the experiments on HF metals and HTSC’s
explore their thermodynamic properties. However, it is
equally important to determine other properties of these
strongly correlated systems, notably quasiparticle occu-
pation numbers n(p, T ) as a function of momentum p
and temperature T . These quantities are not linked di-
rectly to the density of states (DOS) N(ε = 0) deter-
mined by the quasiparticle energy ε) or to the behavior
of the effective mass M∗. When C and T symmetries
are not preserved, the differential tunneling conductivity
and dynamic conductance are no longer symmetric func-
tions of the applied voltage V . Since the time-reversal
invariance and particle–hole symmetry remain intact in
normal Fermi systems, the differential tunneling conduc-
tivity and dynamic conductance are symmetric functions
of V . Thus, a conductivity asymmetry is not observed in
conventional metals at low temperatures.

To determine the tunneling conductivity, we first cal-
culate the tunneling current I(V ) through the point con-
tact between two metals. This is done using the method
of Harrison [49, 50], based on the observation that I(V )
is proportional to the particle transition probability in-
troduced by Bardeen [51]. Bardeen considered the prob-
ability P12 of a particle (say an electron) making a tran-
sition from a state 1 on one side of the tunneling layer
to a state 2 on the other side. This quantity has the
behavior P12 ∼ |t12|2N2(0)n1(1 − n2) in terms of the
density of states N2(0) (at ε = 0) in state 2, the electron
occupation numbers n1,2 in these states, and a transi-
tion matrix element t12. The total tunneling current I is
then proportional to the difference between the current
from 1 to 2 and that from 2 to 1, with the result taking
the form
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I ∼ P12 − P21 ∼ |t12|2N1(0)N2(0)

×
[
n1(1− n2)− n2(1− n1)

]
=

|t12|2N1(0)N2(0)(n1 − n2). (10)
Harrison applied the WKB approximation to calculate
the matrix element, t12 = t(N1(0)N2(0))−1/2, where t
denotes the resulting transition amplitude. Multiplica-
tion of expression (10) by 2 to account for the electron
spin and integration over the energy ε leads to the total
(or net) tunneling current [49, 50]:

I(V ) = 2|t|2
∫

[nF(ε− V )− nF(ε)] dε. (11)

Here nF(ε) is the electron occupation numbers for a metal
in the absence of a FC, and we have adopted atomic units
e = m = ~ = 1, where e and m are the electron charge
and mass, respectively. Since temperature is low, nF(ε)
can be approximated by the step function θ(ε−µ), where
µ is the chemical potential.

We note that a more rigorous consideration of the den-
sities of states N1 and N2 entering Eq. (10) for ε = 0 re-
quires their inclusion in the integrand of Eq. (11) [52–54].
(For example, see Eq. (7) of Ref. [54], where this refine-
ment has been carried out for the system of a magnetic
adatom and scanning tunneling microscope tip.) How-
ever, this complication does not break the I(V ) sym-
metry in LFL case. On the other hand, it will be seen
below that if the system hosts a FC, the presence of the
density-of-states factors in the integrand of Eq. (11) acts
to promote the asymmetry of tunneling spectra, for the
density of states strongly depend on ε = 0, see Fig. 4.

It follows from Eq. (11) that quasiparticles with single-
particle energies ε in the range µ−V ≤ ε ≤ µ contribute
to the current, while I(V ) = c1V and σd(V ) ≡ dI/dV =
c1, with c1 = const. Thus, in the framework of LFL
theory the differential tunneling conductivity σd(V ), be-
ing a constant, is a symmetric function of the voltage V ,
i.e., σd(V ) = σd(−V ). In fact, the symmetry of σd(V )
holds provided C and T symmetries are observed, as is
customary for LFL theory. The symmetry of σd(V ) is
therefore quite obvious and common in case of contact of
two ordinary metals (without a FC), regardless whether
they are in a normal or superconducting state. On the
other hand, it will be seen below that if the system hosts
a FC, the presence of the density-of-states factors in the
integrand of Eq. (11) acts to promote the asymmetry of
tunneling spectra.

Indeed, the situation becomes quite different in the
case of a strongly correlated Fermi system in the vicinity
of a FCQPT that engenders a flat band [39, 40] while
violating the C and T symmetries [3, 6]. Part (a) of
Fig. 4 illustrates the resulting low-temperature single-
particle energy spectrum ε(k, T ). Part (b), which dis-
plays the momentum dependence of the occupation num-
bers n(k, T ) in such a system, shows that the flat band
induced by the FCQPT does in fact entail the violation
of C and T symmetries, as reflected in the asymmetry
of the regions occupied by particles (labeled p) and by

Fig. 4. Flat band induced by FC. The single-particle
spectrum (a) and the quasiparticle occupation numbers
(b) at small but finite temperatures versus the dimen-
sionless momentum k = p/pF, where pF is the Fermi
momentum. Temperature is measured in the units of
EF. At T = 0.01EF and T = 0.0001EF the vertical
lines show the position of the Fermi level EF at which
n(k, T ) = 0.5 (see the horizontal line in part (b)). At
T = 0.0001EF (blue curve), the single-particle spectrum
ε(k, T ) is almost flat (marked “Flat band”) in the range
kf − ki (with ki and kf denoting respectively the initial
and final momenta for FC realization). The distribu-
tion function n(k, T ) becomes more asymmetric with
respect to the Fermi level EF, generating the NFL be-
havior and both C- and T-invariances are broken. To
illuminate the asymmetry, the area occupied by quasi-
holes in part (b) is labeled h (red), that occupied by
quasiparticles, by p (red).

holes (labeled h) [3]. It is seen from Fig. 4 that at T = 0
the electronic liquid of the system has two components.
One is an exotic component made up of heavy electrons
occupying a range of momenta p1 < p < p2 (not shown)
surrounding the nominal Fermi surface at p = pF. This
component is characterized by the superconducting order
parameter κ(p) =

√
n(p)(1− n(p). The other compo-

nent is made up of normal electrons occupying the mo-
mentum range 0 ≤ p ≤ p1; it maintains LFL proper-
ties. This unusual momentum-space distribution cannot
be described within standard BCS theory; nor can its dis-
tinctive properties. In particular, the density of paired
charge carriers that form the superfluid density is no
longer equal to the total particle density nel represented
by paired and unpaired charge carriers. This violation of
Leggett’s theorem is to be expected, since both C- and
T- invariance are violated in the topologically nontrivial
FC state [1, 3, 6].

We are proposing that for the strongly correlated
many-fermion systems in question, the approximate
equality ns ' nel that would normally be expected for
a real system approximating BCS behavior, must be re-
placed by the strong inequality ns = nFC � nel, where
nFC is the density of particles in FC state [35]. This im-
plies that the main contribution to ns comes from the FC
state. Indeed, the wave function Ξ describing the state
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of the Cooper pairs as a whole concentrates their asso-
ciated probability density in the momentum domain the
flat band (cf. Fig. 4) such that |Ξ |2 ∝ ns, with |Ξ |2 ' 0
outside this area. Being defined by the properties of the
FC, this area can be very small, nor does it depend on
nel, so it can be expected that ns � nel [35].

It is worth noting that the first studies of the over-
doped copper oxides suggested that ns � nel, but this
was attributed to pair-breaking and disorder [55–57],
while recent studies with the measurements on ultra clean
samples of La2−xSrxCuO4 authenticate the result that
ns � nel [32]. It is also relevant that the observed
high values of Tc together with the linear dependence
ρs0 ∝ Tc [32] of the resistivity are not easily reconciled
with the pair-breaking mechanism proposed for dirty su-
perconductors. One cannot expect that such a mecha-
nism would be consistent with high values of Tc and the
increase of Tc with doping. On balance, the evidence
supports the hypothesis of fermion condensation as the
underlying physical mechanism of both the unusual prop-
erties of overdoped copper oxides and the asymmetry of
tunneling conductivity [3, 6, 39, 40].

In case of the strongly correlated Fermi system with a
FC, the tunneling current becomes [1, 3, 4]:

I(V ) = 2|t|2
∫

[n(ε− V, T )− nF(ε, T )] dε. (12)

Here one of the distribution functions of ordinary metal
nF in the right side of Eq. (11) is replaced by n(ε, T ),
shown in Fig. 4b. As a result, the asymmetric part of
the differential conductivity ∆σd(V ) = σd(V )− σd(−V )
becomes finite and we obtain [1–4, 6]:

∆σd(V ) ' c
(
V

2T

)
pf − pi
pF

, (13)

where c is a constant of order unity. It is worthy noting
that Eq. (13) is also valid if the density of states N1 and
N2 are taken into account, for that only changes c. Note
that the conductivity ∆σd(V ) remains asymmetric also
in the superconducting phase of both HTSC and HF met-
als. In such cases it is again the occupation numbers n(p)
that is responsible for the asymmetric part of ∆σd(V ),
since this function is not appreciably disturbed by the su-
perconductive pairing. This is because superconductive
pairing is usually weaker than that of Landau in forming
the function n(p) [3, 6]. As a result, ∆σd(V ) remains ap-
proximately the same below the superconducting Tc [3].

Under application of a magnetic field B at sufficiently
low temperatures kBT . µBB (kB and µB are the Boltz-
mann constant and the Bohr magneton, respectively),
the strongly correlated Fermi system transits from the
NFL to the LFL regime [3]. As we have seen above, the
asymmetry of the tunneling conductivity vanishes in the
LFL state [1–4].

Figure 5 shows the differential conductivity σd ob-
served in measurements on YbRh2Si2 [7, 8]. It is seen
that its asymmetry diminishes with elevation of the mag-
netic field B, as the minima of the curves shift to the
V = 0 point. (See Fig. 6 for details.) The magnetic

field is applied along the hard magnetization direction,
B ‖ c, with Bc ' 0.7 T [8], where Bc is the critical
field suppressing the antiferromagnetic order [58]. The
asymmetric part of the tunneling differential conductiv-
ity, ∆σd(V ), is displayed in Fig. 6, being extracted from
measurements shown in Fig. 5. It is seen that ∆σd(V )
decreases as B increases. We predict that application of
the magnetic field in the easy magnetization plane, B⊥c
with Bc ' 0.06 T, leads to a stronger suppression of
the asymmetric part of the conductivity, observing that
in this case the magnetic field effectively suppresses the
antiferromagnetic order and the NFL behavior.

Fig. 5. Differential conductivity σd(V ) = dI/dV mea-
sured on YbRh2Si2 under the application of mag-
netic field (legend) along the hard magnetization
direction [8].

Fig. 6. Asymmetric parts ∆σd(V ) of the tunneling dif-
ferential conductivity measured on YbRh2Si2 and ex-
tracted from the data shown in Fig. 5.

On measuring the differential resistance dV/dI as a
function of current I, one finds that the its symmetry
properties are the same as those of σd(V ); namely, un-
der the application of a magnetic field, the asymmetry
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of the differential resistance vanishes as the system tran-
sits to a normal Fermi-liquid state. The differential re-
sistance dV/dI of graphene as a function of a direct
current I for different magnetic fields B is reported in
Fig. 7 [9]. The asymmetric part of the differential re-
sistance As(I) = dV/dI(I) − dV/dI(−I) is seen to di-
minish with increasing magnetic field, vanishing near
B ' 140 mT. Such behavior is extremely compelling,
since the strongly correlated graphene sample has a per-
fect flat band, implying that the FC effects should be
clearly manifested in this material [9].

Fig. 7. Differential resistance dV/dI of graphene ver-
sus current I at different magnetic fields B shown in the
legend [9]. Weak asymmetry is seen at small magnetic
fields.

Fig. 8. Magnetic field (legend) dependence of the
asymmetric part dV/dI(I)−dV/dI(−I) versus the cur-
rent I, extracted from the data of Fig. 7 for graphene.

Thus, in accordance with prediction [1–4], the asym-
metric part tends to zero at sufficiently high magnetic
fields, as is seen from Fig. 8. The asymmetry persists
in the superconducting state of graphene [9] and is sup-
pressed at B ' 140 mT.

Disappearance of the asymmetric part of the differ-
ential conductivity in Fig. 8 indicates that as the mag-
netic field increases, graphene transits from the NFL to
the LFL state. To support this statement, we surmise
that the resistance ρ(T ) should exhibit linear dependence
ρ(T ) ∝ T in the normal state at zero magnetic field,
while at higher magnetic fields and low temperatures
kBT � µBB, the resistance becomes a quadratic func-
tion of temperature ρ(T ) ∝ T 2, as is generally the case
in other strongly correlated Fermi systems [3, 6].

5. Universal scaling relation
for high-Tc superconductors

Another experimental result [36] providing insight into
the NFL behavior of strongly correlated Fermi systems is
the universal scaling relation, which can also be explained
using the flat band concept. The authors of Ref. [36]
measured the temperature dependence dρ/dT of the re-
sistivity ρ for a large number of HTSC substances for
T > Tc. They discovered quite remarkable behavior: for
all substances considered, dρ/dT shows a linear depen-
dence on λ2(T = 0) ≡ λ20, where λ is the London penetra-
tion depth. All of the superconductors considered belong
to the London type, for which λ >> ξ0, where ξ0 is the
zero-temperature coherence length (see, e.g., Ref. [35]).

It has been shown that the scaling relation [36]
dρ

dT
∝ kB

~
λ20 (14)

remains valid over several orders of magnitude in λ0, sig-
nifying its robustness. At the phase transition point
T = Tc, relation (14) yields the well-known Holmes
law [36] (see also [59] for its theoretical derivation):

σTc ∝ λ−2
0 , (15)

in which σ = ρ−1 is the normal state dc conductivity.
It has been shown by Kogan [59] that the Holms law
applies even for the oversimplified model of an isotropic
BCS superconductor. Within the same model of a simple
metal, one can express the resistivity ρ in terms of mi-
croscopic substance parameters [60]: e2nρ ' pF/(τvF),
where τ is the quasiparticle lifetime, n is the carrier den-
sity, and vF is the Fermi velocity. Taking into account
that pF/vF = M∗, we arrive at the expression

ρ =
M∗

ne2τ
, (16)

which formally agrees with the Drude formula. It has
been shown in Ref. [35] that good agreement with exper-
imental results [32] is achieved when the effective mass
and the superfluid density are attributed to the carriers in
the FC state only, i.e., M∗ ≡MFC and n ≡ nFC . Keep-
ing this in mind and utilizing the relation 1/τ = kBT/~
(see Ch. 9 of Ref. [6]), we obtain

ρ =
MFC

e2nFC

kBT

~
≡ 4πλ20

kBT

~
, (17)

i.e. dρ/dT is indeed given by the expression (14). Equa-
tion (17) demonstrates that fermion condensation can
explain all the above experimentally observed universal
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scaling relations. It is important to note that the FC
approach presented here is insensitive to and transcends
the microscopic, non-universal features of the substances
under study. This is attributed to the fact that the FC
state is protected by its topological structure and there-
fore represents a new class of the Fermi liquids [6, 40]. In
particular, consideration of the specific crystalline struc-
ture of a compound, its anisotropy, its defect composi-
tion, etc. do not change our predictions qualitatively.
This strongly suggests that the FC approach provides
a viable theoretical framework for explaining universal
scaling relations similar to those discovered in the ex-
periments of Boẑović et al. [32] and Hu et al. [36]. In
other words, the fermion condensation of charge carri-
ers in the considered strongly correlated HTSC’s, engen-
dered by a quantum phase transition, is indeed the pri-
mary physical mechanism responsible for their observ-
able universal scaling properties. This mechanism can
be extended to a broad set of substances with a very dif-
ferent microscopic characteristics, as discussed in detail
in Refs. [3, 6].

5. Conclusions

The central message of the present paper is that if
the electronic spectrum of a substance happens to fea-
ture a dispersionless part related to the fermion conden-
sation (FC), or “flat bands”, it is just this aspect that
is responsible for measured properties that depart rad-
ically from those of familiar condensed-matter systems
described by the Landau–Fermi liquid theory. As we
have demonstrated above, this is the case irrespective
of varied microscopic details characterizing these sub-
stances such as crystal symmetry, dimensionality, and
defect structure. The explanation for this finding lies
in the fact that FC most readily occurs in substances
hosting flat bands. Experimental manifestations of FC
phenomena are varied, which implies that different ex-
perimental techniques are most suitable for detecting and
analyzing them.

One example of FC experimental manifestation is the
quantum spin-liquid physics in geometrically frustrated
magnets and in herbertsmithite in particular. Here we
suggest that to elucidate the QSL properties in latter
substance, it is essential to perform the targeted mea-
surements of heat transport, low-energy inelastic neu-
tron scattering and optical conductivity in the presence
of magnetic fields at low temperatures. Moreover, we
have suggested that the increasing x, i.e. the percentage
of Zn sites that are occupied by Cu, can facilitate the
frustration of the lattice and thereby act to stabilize the
QSL state. This conjecture can be tested in experiments
on samples of herbertsmithite with different x under the
application of a magnetic field. While making a step to-
wards confirmation of the existence of a robust QSL state
in herbertsmithite, our considerations may also provide
an effective strategy for analyzing this state in the other
magnetic insulators having geometrical frustration.

The other important experimental technique is scan-
ning tunneling microscopy, which has the advantage of
being sensitive both to the density of states and quasipar-
ticle occupation numbers. The reason for this dual sen-
sitivity is that this technique is a well suited to studying
effects related to the violation of particle–hole symme-
try and time-reversal invariance. Their violation leads to
asymmetry of the differential tunneling conductivity and
resistance to the applied voltage V or current I. Based
on the recent experimental results, we have demonstrated
that the asymmetric part of both the conductivity and
the resistivity vanishes under the application of a mag-
netic field, as predicted in Refs. [1, 2, 4]. To support
our statement regarding the role of broken T-invariance,
we have analyzed and discussed recent challenging mea-
surements in overdoped cuprates by Boẑović and co-
authors [32] within the fermion condensation framework.
Also within the FC framework, we have described and ex-
plained otherwise purely empirical observations of scaling
properties [36]. Finally, our study of such recent experi-
mental results strongly suggests that the fermion conden-
sation quantum phase transition is an intrinsic feature
of many strongly correlated Fermi systems and can be
viewed as the universal agent of their non-Fermi-liquid
behavior.
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