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We consider transformation from a closed to an open spin chain and vice versa produced by changing single
link strength in a pair of neighboring spins. We show that in the non-adiabatic time domain fidelity of such a
process can be increased by proper choosing of the control function for spin–spin exchange coupling. We obtain
this function for an antiferromagnetic quantum Ising chain and present heuristic reasons restricting possible time-
dependences of Hamiltonians applied for a high-fidelity control.
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1. Introduction

Precise control of complex quantum systems became
important task in last decades due to the prospective of
building a quantum computer [1] and experimental fea-
sibility of such kind of control [2, 3]. Entanglement is
the main feature of quantum computing algorithms, thus
producing and destroying entanglement between parts of
a complex system [4] is a problem of importance and
interest. Another type of problems, related to manipu-
lation of entanglement, is a transformation of a complex
system from a highly entangled ground state of the ini-
tial Hamiltonian Hi to a demanded state, which is the
ground state of another Hamiltonian Hf . These Hamil-
tonians Hi and Hf can be related to different geometry
(or topology) of a complex system. We would like to em-
phasize that although our goal is the transformation of
quantum states one into another, we make a correspon-
dence between initial and final states and Hamiltonians.
For examples, investigating a spin lattice, we can consider
it as a graph with spins as vertices, spin–spin interactions
as edges, and in such a case Hi and Hf correspond to dif-
ferent configurations of the edges. IfHi (Hf ) corresponds
to a disconnected (connected) graph and [Hi, Hf ] 6= 0, we
have a modification in the system entanglement.

The task of a quantum ground state transformation
can be solved via unitary process using adiabatic control
when evolution is governed by a time dependent Hamilto-
nian H(t) = a(t)Hi + b(t)Hf , where a(0) = 1, a(T ) = 0,
b(0) = 0, b(T ) = 1, and T is an evolution time. This pro-
cess is also the main recipe of adiabatic quantum com-
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putation [5, 6] and quantum annealing (see, e.g. [7] for
quantum spin systems). In most cases it is sufficient to
set linear switching: a(t) = 1 − t/T and b(t) = t/T to
get a demanded result. The problem here is that time
T must be sufficiently long to satisfy the adiabatic the-
orem conditions [8]. However, at a long evolution time
the system undesired decoherence becomes possible, thus
the challenge of adiabatic shortcuts appears. Some ap-
proaches to make adiabatic evolution shorter, such as
counteradiabatic driving [9, 10], strength-pulsed (noise)
control [11, 12] and others [13, 14] have been presented
recently. A common feature of all these techniques, which
is difficult to realize, is the need of control all parts of the
quantum system. Note that in our task we do not need
the quantum system to be in the instantaneous ground
state of the intermediate Hamiltonian H(t) (0 < t < T )
during the entire transformation process since we are in-
terested only in the final state. In present paper we con-
sider transformation from the ground state of a closed
spin chain to the ground state of an open spin chain and
show that it is possible to use local-only control of a spe-
cial kind to increase the fidelity of the target state in the
non-adiabatic time domain. Some general restrictions
imposed on the control function will be presented and
discussed.

2. Results

2.1. The model

The key element of our investigation is a time-
dependent antiferromagnetic quantum Ising Hamiltonian
in a transverse field

H(g) =

N−1∑
n=1

σx
nσ

x
n+1 + gσx

1σ
x
N +B

N∑
n=1

σz
n, (1)
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where σx, σz are the Pauli matrices, B is an external
magnetic field, N is the number of spins in the chain,
and g is a time-dependent control parameter. We as-
sume that quantum state of the chain is described by
a vector |ψ(t)〉, and the initial state is |ψ(0)〉 = |φ0〉,
with H(g = 1) |φ0〉 = λ0 |φ0〉, and λ0 being the minimum
eigenvalue of H(g = 1). Note that the system evolves in
time due to nonzero value of the commutator[

N−1∑
n=1

σx
nσ

x
n+1 +B

N∑
n=1

σz
n, gσ

x
1σ

x
N

]
=

2igB (σy
1σ

x
N + σx

1σ
y
N ) 6= 0, (2)

and the ability to control the process depends on the
evolution of the product of spin components at the edge
connecting the first and and the last spin.

The problem now is to make a “cut” of a chain, i.e. to
drive a system into a state |ψ(T )〉 = |χ0〉, where |χ0〉 is
the ground state of the open chain Hamiltonian H(g = 0)
(see Fig. 1). We can write the final state as a result of
unitary evolution
|ψ(T )〉 = U(T ) |ψ(0)〉 , (3)

U(T ) = T exp

(
− i

∫ T

0

H(g(t′))dt′

)
, (4)

where T stands for the time-ordering, and control func-
tion g(t) = 1 for t ≤ 0 and g(t) = 0 for t ≥ T .

Fig. 1. Schematic illustration of transformation from a
closed to an open spin chain.

We define the final target fidelity as follows:
fT = | 〈χ0|ψ(T )〉 |, (5)

and consider it as a functional of the control function:
fT = fT [g(t)]. The problem is to find the function g(t)
maximizing the target fidelity fT for fixed finitetime T .

In order to obtain a proper control function we make a
two-parametric parametrization at the interval t ∈ [0, T ]:

g(t) = 1− (1 + a1 + a2)
t

T
+ a1

t2

T 2
+ a2

t3

T 3
, (6)

and the target fidelity becomes a function of control pa-
rameters fT = fT (a1, a2).

2.2. The features of efficient control

Before going further we emphasize that we restrict our
consideration to the following condition:

E0(g) 6= E1(g), ∀g ∈ (0, 1), (7)
where E0(g) (E1(g)) is the instant ground (first excited)
state energy of the Hamiltonian (1). If the condition (7)
is valid then it is possible to make the adiabatic trans-
formation with

fT0 ≡ fT (0, 0)→ 1, T →∞. (8)
We can argue that for a large enough T a linear de-
crease (8) is the optimal shape of the control. From
the corresponding Schrödinger equation in the adiabatic
frame we can see that probability of leaving the instan-
taneous eigenstate of H(t) is proportional to the time
derivative of Hamiltonian |∂H/∂t| ∝ |∂g(t)/∂t| (see e.g.
textbook [15]). Thus, the adiabaticity condition can be
written as ∂H/∂t → 0, and if one changes g(t) for some
fixed large T from linear dependence into some other
shape it necessarily leads to increase of |∂H/∂t| (for some
t ∈ (0, T )), and consequently the adiabaticity condition
tends to be broken. Another way to see that the linear
decrease is the optimal control in the adiabatic domain
is the following reasoning. Let us take a large enough T
which corresponds to the adiabaticity regime for linear
decrease, and periods T ′ with T ′ > T also satisfy adia-
baticity condition. Now, let us modify the control func-
tion a little in two different ways (see Fig. 2):
(i) we start linear decrease not from t = 0 but from t = δt,
or
(ii) we finish linear decrease not at t = T but at t = T−δt.

Fig. 2. Schematic illustration of the fact that linear de-
pendence is the optimal one for near-adiabatic regime.
Red dashed lines correspond to the modifications of the
linear decrease which is shown by a bold solid line. Ob-
viously, the modified control is not better for adiabatic-
ity than the non-modified one.
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Both described modifications of the control func-
tion are nothing else than just decreasing the effective
time T → T − δt. The latter means that adiabaticity
with modified control function will not be better than
that for the linear shape, and by setting δt→ 0 we con-
clude that the linear decrease is the optimal shape for
relatively large T . This conclusion also can be seen from
the numerical results in Ref. [4].

Our conclusion (8) now will help us to understand the
restrictions imposed on the control function g(t) in a non-
adiabatic time domain. We claim that any efficient con-
trol function must satisfy the following inequalities:

dg(t)

dt

∣∣∣∣
t=0

< 0,
dg(t)

dt

∣∣∣∣
t=T

< 0. (9)

The explanation of the restrictions (9) is the follow-
ing. Let us assume that the optimal control function
in the non-adiabatic domain does not satisfy (9). Now
we slightly increase the time T toward the adiabatic do-
main. As we have already noticed, the optimal g(t) shape
in this region is a linear decrease (8), thus, with the
increase of T the optimal shape of g(t) must be con-
tinuously transformed into the linear shape. The latter
means that there must be some intermediate values of T
when dg(t)/dt|t=0 = 0 and dg(t)/dt|t=T = 0. However,
the control cannot be efficient if the derivative of the con-
trol function is zero at the start or at the end of a time
interval, because one can consider that there is no control
applied at all for t� T and T − t� T . Thus we obtain
a contradiction with our initial statement that (9) is not
valid for optimal control, and thus we conclude that (9)
must be valid.

Fig. 3. Illustrative depiction of control functions not
satisfying (10) (upper part) and satisfying (10) (lower
part).

By substituting (6) into the two-parametric Ansatz (9)
we get the following conditions:

a2 > −1− a1, a2 <
1− a1

2
. (10)

It is interesting to note that restrictions (10) do not de-
pend on time T , being in some sense the universal ones,
and connect together adiabatic and non-adiabatic time
domains (even if we do not restrict the Ansatz in (6) to
cubic terms). Obviously, the point (a1 = 0, a2 = 0) sat-
isfies (10). In Fig. 3 we show an illustrative example of
control functions which are “bad candidates” (not satis-
fying (10)) and “good candidates” (satisfying (10)).

Although this analysis is not mathematically rigorous,
it provides the solid basis for the understanding of the op-
timal control. Further numerical results presented below
confirm our statement (9).

2.3. Numerical results

We use a numerical search in order to find the optimal
values of a1 and a2 as can be made by using two different
approaches such as:
(i) by brute-force evaluation of fT for all possible values
of parameters (within some finite region and step size),
in other words — building a landscape of fidelity;
or
(ii) by using gradient search algorithms (for calculations
in this paper we used the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) optimization method [16] which is built-
in Python scientific packages).

Numerical calculations of time-ordered exponent (4)
have been done by dividing the time interval T toM � 1
pieces δt = T/M , and using approximation

U(T ) ≈
M−1∏
n=0

exp

(
− iδtH

(
g
(
δt(n+ 1/2)

)))
. (11)

Here we took M = 300 and matrix exponents have been
calculated via a built-in Python function.

Although the first approach needs large computa-
tional efforts, building the landscapes for searching of
the optimized control functions can be done by paral-
lel computing tools. In this paper we show that these
two approaches give the same result. For numerical
analysis we use the following Hamiltonian parameters:
N = 5 and B = 0.5. With this choice we satisfy the
level non-crossing condition (7) and in Fig. 4 present
the dependence of the two lowest eigenvalues of the
Hamiltonian (1).

In Fig. 5 we present the non-optimized fidelity fT0 and
the fT obtained with optimized g(t) found by the gradi-
ent search. We see that advantage of the using of opti-
mized control appears in a wide range of non-adiabatic T .

Let us look into a landscape of the fidelity in the pa-
rameter space for T = 1 as depicted in Fig. 6. White tri-
angle corresponds to a linear decrease and white square
corresponds to an effective control shape for this par-
ticular T . Area covered by the red dots corresponds to
parameters which does not satisfy (10). As can be seen
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Fig. 4. The ground (E0, blue solid line) and the first
excited (E1, red dashed line) state energy of the Hamil-
tonian (1) as a functions of g parameter. Here N = 5
and B = 0.5.

Fig. 5. Output fidelity of non-optimized (blue solid
line) and optimized (red dashed line) transitions for cut-
ting of a spin chain with N = 5 and B = 0.5.

Fig. 6. Landscape of the target fidelity fT (a1, a2) for
T = 1. White triangle corresponds to the simple linear
control and square corresponds to the maximal fidelity
process.

in this figure, there is a continuous “island” of a high fi-
delity connecting linear decrease (white triangle) and the
optimal shape (white square). Thus, the numerical gra-
dient search started from the linear shape is efficient in
this situation.

Now let us return to our statement (8). Our numerical
results confirm that the linear decrease is the optimal
control in the adiabatic limit. In Fig. 7 we show the
dependence of optimal values of parameters a1, a2 for
different times T . One can see that all points are inside
allowed by (10) area, and they converge to the linear
decrease (depicted as triangle).

Fig. 7. Optimal values of parameters a1 and a2 for dif-
ferent T . All of them lie in the region determined by
inequalities (10) (non-dotted area). Triangle is the adi-
abatic limit of control with the linear decrease.

In Fig. 8 we show the optimal shapes of control for
some values of time T . As can be seen from Fig. 8,
the calculated shapes correspond to a “good candidates”
in Fig. 3.

2.4. Pulsed control
Inequalities (9) are written for a smooth control func-

tion. Now, let us assume that we apply for the control
discontinuous rectangular pulses as

g(t) =

K∑
n=1

bn
[
θ
(
t− (n− 1)∆t

)
− θ (t− n∆t)

]
, (12)

where we have K pulses with the duration ∆t = T/K,
amplitude of n-th pulse is bn, and θ(t) is the Heaviside
step function. In such a case by doing the same rea-
soning (for K � 1) as above we arrive at the following
restrictions:

b1 < 1, bK > 0. (13)
However, we can see that restrictions (13) are valid even
for small number of pulses. In Fig. 9 we show the land-
scape of fidelity for pulse control (12) for the case K = 2.
Instead of comparing optimal parameters with the sim-
ple linear shape as in Fig. 6, we assume “quasi-linear”
step-like decrease with b1 = 2/3 and b2 = 1/3 as a non-
optimized control function and as a starting point for the
numerical gradient search.
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Fig. 8. Optimal control shapes for different T . All of
them correspond to the “good candidates” in Fig. 3.

Fig. 9. Landscape of the target fidelity in a parameter
space for T = 1 for rectangular pulsed control (12) with
K = 2. Black triangle corresponds to a simple “quasi-
linear” control (b1 = 2/3 and b2 = 1/3), and rectangular
corresponds to the maximum output fidelity.

2.5. Chain stitching with pulsed control

We can investigate the opposite problem: stitching of
a spin chain, i.e. transformation from the ground state of
an open chain to the ground state of a closed one. In this
case we can rewrite the restrictions (9) in the following
form:

dg(t)

dt

∣∣∣∣
t=0

> 0,
dg(t)

dt

∣∣∣∣
t=T

> 0. (14)

For stitching under the pulsed control (12) we have b1 > 0
and bK < 1. In Table I we put numerical results for cut-
ting and stitching processes for pulse control with K = 2.
As can be seen, the optimal values of b1 and b2 satisfy
conditions (14) imposed on them.

TABLE I

Non-optimized and optimized fidelity for pulse controlled
cutting and stitching spin chain with N = 5, B = 0.5,
J = 1.

T = 1 T = 2 T = 3 T = 4

Cutting the spin chain
fT0 0.80 0.88 0.95 0.99
fT 0.87 0.92 0.97 0.99
b1 -0.48 0.37 0.58 0.68
b2 1.59 0.70 0.49 0.45

Stitching the spin chain
fT0 0.80 0.88 0.95 0.99
fT 0.87 0.92 0.97 0.99
b1 1.59 0.70 0.49 0.45
b2 -0.48 0.37 0.58 0.68

3. Conclusions

Despite the difficulties in analytical investigation of the
time-ordered propagator (4) we have found general re-
strictions (9) on the shape of efficient optimized control
functions. These conditions follow from the assumption
of existence of a continuous transformation from a non-
adiabatic to the adiabatic time domain. This transfor-
mation is possible when the lowest energy levels of the
Hamiltonian do not cross (7). Thus, we connect the be-
havior of a complex quantum system in adiabatic and
non-adiabatic time domains. Although our proposal is
based on the locality of the applied control, our conclu-
sions (9) are not limited either by the locality or by a
special kind of a quantum system such as a spin chain.
This analysis can be applied for speeding up transforma-
tion of any complex quantum system which can be trans-
formed in the adiabatic way, including optical control of
cold atoms [17].
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