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The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways.
The concept of a topological phase transition separating phases with a different ground state topology, rather than
phases of different symmetries, has become a widely studied field in its own right. Additionally, an analogy between
phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which
occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions
and one is often now far from the equilibrium situation. In these lecture notes we will give a short overview of the
history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can
be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the
effect which the topologically protected edge states, which are one of the interesting consequences of topological
phases, have on dynamical phase transitions. Second we will study what happens in the experimentally relevant
situations where the system begins either in a thermal state rather than the ground state, or exchanges particles
with an external environment.
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1. Introduction

Our current understanding of phase transitions owes
much to the phenomenological theory of Landau [1, 2].
In this theory a second order, or continuous, phase tran-
sition is accompanied by a symmetry breaking across the
transition, demonstrated by an order parameter. This is
complemented by the earlier Ehrenfest classification, in
which phase transitions are classified by non-analyticities
which appear in derivatives of the free energy. Modern
physics has added two new types of phase transition to
these concepts: topological phase transitions and dynam-
ical phase transitions.

A topological phase transition is accompanied by a
change not in symmetry but rather in topology across the
phase boundary [3, 4]. Band insulators, which possess a
gap in their spectrum, can be classified by the topology
of their band structure. If we consider a band insulator
with a gap at zero energy, or a superconductor which has
a quasi-particle gap at zero energy, then we can ascribe
an integer Z or binary Z2 invariant to the negative en-
ergy bands. Note however that the total band structure
will always have an invariant of zero. This invariant can
only be changed by either closing the gap, or by chang-
ing the symmetry properties of the Hamiltonian [5–7].
Typically, this latter option is not considered and we are
interested in the topological phase transitions in which
the gap closes and opens, and the invariant changes, as a
function of some parameter of the system with the sym-
metry properties of the Hamiltonian remaining the same.
Such a phase transition can be contrasted with Landau’s
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picture of symmetry breaking for continuous phase tran-
sitions. In this lecture we will focus purely on one dimen-
sional (1D) topological insulators.

One of the most interesting and widely studied con-
sequences of those phases in topological systems with
non-zero topological invariants, which we will refer to
generically as topologically non-trivial phases, is the exis-
tence of protected edge states which appear at the bound-
aries. There is a bulk-boundary correspondence [8] which
proves that the bulk topological invariant determines the
number of protected edge states which appear at the
boundaries. These edge states have an exponentially
small energy as a function of the system length, and are
robust to disorder due to the bulk protection.

The second type of phase transition we are interested
in is a dynamical phase transition. In this case an analogy
is forged between the non-analytical behaviour of deriva-
tives of the free energy, as in a continuous phase transi-
tion, and non-analytical behaviour in dynamical observ-
ables as a function of time. In particular we focus here
on the quantum mechanical overlap between an initial
state and a time evolved state as the observable, which
is often called the Loschmidt amplitude.

The Loschmidt amplitude bears some relation to the
fidelity, which is the overlap between two quantum states.
Due to its universal scaling behaviour near quantum
phase transitions this can be used to study phase transi-
tions [9–14]. For the 1D topological systems we are inter-
ested in it has been shown that the fidelity has universal
finite size scaling behaviour [14] and there are character-
istic signatures in the fidelity which originate from the
boundaries and demonstrate the existence or absence of
the topologically protected edge states [13].

After some background on 1D topological insulators
and superconductors, focusing on two particular exam-
ples, we will introduce dynamical phase transitions for
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these systems. Following Refs. [15] and [16] we will then
consider the particular properties of dynamical phase
transitions when applied to topological systems, and the
effect of the edge states. Finally we will look at several
generalisations of the dynamical phase transitions to fi-
nite temperatures and open systems with particle loss or
gain processes.

1.1. Topological phase transitions

We consider 1D Hamiltonians of the generic form

H =
∑
k

Ψ †kH(k)Ψk (1)

with
H(k) = dk · τ , (2)

where τ = (τx, τ y, τ z) are the Pauli matrices, which act
in some subspace, dk = (dxk, d

y
k, d

z
k), and Ψk are the ap-

propriate creation or annihilation operators for that sub-
space. Below we will focus on two examples where this
subspace will either be a physical lattice subspace when
there are two particles in the unit cell, or particle–hole
space for a superconductor described by a Bogoliubov-
de Gennes Hamiltonian. Diagonalising dk · τ one finds
d̃k · τ̃ with d̃k = (0, 0, εk). The pairs of eigenenergies
±εk = ±|dk| are a result of the particle–hole symmetry
of the Hamiltonian.

In one dimension the topological invariant we are in-
terested in is the winding number or the Zak–Berry
phase [17–21]. For a two band model such as (1) we
can calculate the Zak–Berry phase for the lower energy
band

ϕ = i

∫
dk〈uk|∂kuk〉, (3)

with the integral taken round the Brillouin zone and |uk〉
being an eigenstate of the lower band: H|uk〉 = −εk|uk〉.
This results in either Z or Z2 invariants, depending on
the symmetries of the model [6], and in turn this tells
us how many topologically protected edge states will be
present [8, 22].

In 1D in the “ten-fold way” symmetry classification [5]
we have three symmetry classes with ground states la-
beled by a Z topological invariant: AIII, BDI, and CII;
and two labeled by a Z2 topological invariant: D and
DIII. We will focus on examples in the BDI class, which
have particle–hole symmetry, a form of time reversal
symmetry and chiral symmetry, which is in fact the
combination of the previous two. Hamiltonians with
particle–hole symmetry obey the anti-commutation rela-
tion {C, H} = 0 with C the unitary particle–hole operator
satisfying C2 = 1. Secondly the time reversal operator is
T , with T 2 = 1, and we have [T , H] = 0. We demand
that {C, T } = 0 and note that the chiral symmetry is
simply {T C, H} = 0.

Due to the particle–hole symmetry it is always possible
to make a momentum independent rotation to a basis in
which, for example, dzk = 0 in Eq. (2). The eigenstates
for the negative energy band are then

|uk〉 =
1√
2

(
1

−e− iφk ,

)
(4)

with

e− iφk =
dxk − idyk√

(dxk)2 + (dyk)2
. (5)

The Zak–Berry phase then becomes

ϕ =
1

2

∫
dk∂kφk = πν, with ν ∈ Z. (6)

This last part follows from considering how many times
the line of e iφk encloses zero in the complex plane for
k : 0 → 2π. This number cannot change unless dxk =
dyk = 0, which is the gap closing condition.

We consider two exemplary one-dimensional (1D)
topological insulators/superconductors, the Su–
Schrieffer–Heeger [23] (SSH) model and the long
range Kitaev chain [24, 25]. Both of these models are
in the BDI symmetry class with particle–hole, time
reversal, and chiral symmetries. We will analyse these
models both in the case where they have periodic
boundary conditions (PBCs), to investigate the bulk
properties, and for open boundary conditions (OBCs), to
consider the role of the boundaries and the topologically
protected edge modes.

The SSH model is a simple dimerised chain, originally
introduced to describe polymers like polyacetyline [23]
and has the Hamiltonian

H = −J
∑
j

[
(1 + δ eiπj)c†jcj+1 + H.c.

]
. (7)

c†j creates a fermionic particle at site j. J is the average
hopping integral and δ the strength of the dimerisation.
At δ = 0 this system becomes critical and the gap closes.
This critical point separates the topologically trivial, δ <
0, and non-trivial, δ > 0, phases. For an example see
Fig. 1. A straightforward Fourier transform and subspace
rotation will transform (7) into (1) with
dk = (−2J cos k, 2Jδ sin k, 0) . (8)

Due to the definition of the unit cell implicit here in this
case the Brillouin zone is actually defined as k : 0 → π
and the Zak–Berry phase becomes

ϕ =
π

2
sgnδ, (9)

with δ > 0 being the non-trivial phase.

In order to consider more general scenarios we also con-
sider a Kitaev chain of M sites with long-range hopping
terms

H =
∑
i,j

Ψ †i
(
∆|i−j| iτ

y − J|i−j|τ z
)
Ψj+1 + H.c.

−µ
∑
j

Ψ †j τ
zΨj . (10)

This is a Bogoliubov–de Gennes Hamiltonian for spin-
less particles with τ representing the particle–hole space.
Ψ †j = (c†j , cj) and c

(†)
j annihilates (creates) a fermionic

particle on site j. ∆|i−j| and J|i−j| are a p-wave like
superconducting pairing and hopping term, respectively.
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Fig. 1. An example of a topological phase transition
in the SSH model, see Eq. (7), showing the spectrum as
a function of the dimerisation δ. The bulk gap closes
and opens at δ = 0 and for δ > 0 the systems is in a
topologically non-trivial phase as demonstrated by the
existence of the zero energy edge states. Calculated for
a system of size N = 50 with OBCs.

A Fourier transform and rotation will give us (1) with
Ψ †k = (c†k, c−k) and

dk =
∑
m

(−2Jm cos(mk), 2∆m sin(mk), 0)− (µ, 0, 0) .

(11)
In this case one can see that the Zak–Berry phase can
in principle now result in invariants of any integer which
allows us to consider cases with many protected edge
states. Here we will limit the long range terms to
∆m≥4 = Jm≥4 = 0.

1.2. Dynamical phase transitions

The concept of dynamical phase transitions introduced
by Heyl, Polkovnikov, and Kehrein in 2013 [26] is based
upon an analogy between the equilibrium partition func-
tion, namely

Z(β) = Tre−βH (12)
for a Hamiltonian H at inverse temperature β, and the
overlap between an initial state |ψ0〉 and its time evolved
counterpart e iHt|ψ0〉:

L(t) =
〈
ψ0

∣∣e− iHt
∣∣ψ0

〉
. (13)

This latter quantity is the Loschmidt amplitude. Much
like the non-analyticities as a function of β which ac-
company an equilibrium phase transition, the Loschmidt
amplitude can become non-analytic as a function of com-
plex time t. At these times, referred to as Fisher zeroes,
L(t) vanishes. When the Fisher zeros cross the real time
axis then a dynamical phase transition occurs.

The free energy for the partition function also has a
counterpart for the Loschmidt echo and we can introduce
the return rate

l(t) = − 1

N
ln |L(t)|, (14)

where N is the system size. We note that this avoids
issues associated with the expected Anderson orthogo-
nality catastrophe for a many body system, in which the
overlap between the initial state and the time evolved
state will become exponentially small in the thermody-
namic limit.

As is usual for dynamical phase transitions we focus
on a particular form of non-equilibrium dynamics known
as a quench. In a quench the system is first prepared
in the many-body ground state |ψ0〉 of a Hamiltonian
H0. This is then time evolved by a different Hamilto-
nian H1. Typically, H0 and H1 differ by a global pa-
rameter. For example we will consider quenches in which
H0 is the SSH model with δ < 0 and H1 is the SSH
model with δ > 0, a quench across the topological phase
transition.

It was first shown that the Ising model undergoes dy-
namical phase transitions when quenching across its equi-
librium phase boundary [26] and soon generalised to more
models [27]. The Ising model is a 1D spin- 12 chain with
Hamiltonian

H(g) = −1

2

∑
i

σzi σ
z
i+1 +

g

2

N∑
i=1

σxi . (15)

This has a phase transition for an applied magnetic field
g = 1. Note that this model can be mapped to a special
case of the Kitaev chain, Eq. (10), with nearest-neighbour
hopping only and µ = −g/2 and J1 = 1/4 = −∆1. At
critical times tn = (2n + 1)tc, where n = 0, 1, 2, . . ., the
Loschmidt amplitude becomes zero L(tn) = 0 and hence
the return rate diverges. The critical time tc can be cal-
culated, and for a quench from an initial state which is
the ground state ofH(g0), and time evolution withH(g1)
one finds

tc = π

√
g1 + g0

(g1 − g0)(g21 − 1)
. (16)

Two examples are shown in Fig. 2, when the system is
quenched across the equilibrium phase boundary at g = 1
then there are dynamical phase transitions. However
when it is quenched within an equilibrium phase then
there are no dynamical phase transitions.

This led to the belief that perhaps there was a one-
to-one relation between the dynamical phase transitions
and whether the quenches crossed the equilibrium phase
boundary. However further work on more complicated
systems demonstrated that no such direct relation ex-
ists [28]. For the XY chain in a transverse magnetic
field it was demonstrated that dynamical phase tran-
sitions can occur with and without crossing equilib-
rium phase boundaries, and that crossing an equilib-
rium phase boundary with the quench does not nec-
essarily imply a dynamical phase boundary [28]. Due
to the potential richness of the non-equilibrium physics
involved this is perhaps not very surprising. How-
ever, for the case we consider here of 1D topological
insulators there are some simple statements that can
be made.
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Fig. 2. A dynamical phase transition in the Ising
model, Eq. (15), for a quench across the equilibrium
phase transition (g : 0.5 → 1.5) and inside a phase
(g : 0.25 → 0.75). Only the quench across the phase
transition shows the cusps in the return rate associated
with a dynamical phase transition. Both cases are scaled
by the critical time for the quench g : 0.5→ 1.5.

2. Dynamical phase transitions
in 1D topological insulators

The Loschmidt amplitude for quenches in topologi-
cal insulators with Hamiltonians as given by (1), can be
easily calculated for periodic boundary conditions. One
finds [15]:

L(t) =
∏
k

[
cos(ε1kt) + i d̂0k · d̂1k sin(ε1kt)

]
, (17)

where d0,1k describes the initial ground state or the time
evolving Hamiltonian, respectively. Furthermore, we de-
fine d̂0,1k = d0,1k /|d0,1k | and ε1k as the positive eigenenergy
of the time-evolving Hamiltonian. The product runs over
the whole of the filled negative energy band.

In this case one can see that the critical times occur if
there is a critical momentum satisfying
d̂0k∗ · d̂1k∗ = 0. (18)

In that case
tn =

π

2ε1k∗
(2n+ 1) , where n = 0, 1, 2, . . . . (19)

Furthermore, one can make the statement that if d0k
and d1k belong to different topological phases there
must be a solution to Eq. (18) [15]. For the long
range Kitaev model there can be multiple solutions to
Eq. (18), and the number of critical momenta appears
to be related to the change in the topological invari-
ant between the ground state and the time evolving
Hamiltonian [29].

As an example in Fig. 3 we show two quenches across
the topological phase transition for the SSH model
Eq. (7). In Fig. 4 a dynamical phase transition with
two critical times is shown. Here we have used Eq. (10)
with the quench from ν = 1 with J = (1,−2, 2), µ = 2,
and ∆ = (1.3,−0.6, 0.6) to ν = 3 with J = (1,−2, 2),
µ = 0.1, and ∆ = (0.45,−0.9, 1.35) [29].

Fig. 3. A dynamical phase transition in the SSH
model, Eq. (7), for quench across the topological phase
transition: δ : |− δ′| → |δ′| with δ′ = 0.3,−0.95. Due to
the symmetry of this model in the bulk there is no dif-
ference between these quenches and for δ : |δ′| → −|δ′|.

Fig. 4. A dynamical phase transition in the long range
Kitaev model, Eq. (10), for quench across a topological
phase transition with topological invariants 1 to 3. In
this case there are two critical times at which dynamical
phase transitions occur. The vertical black and dashed
red lines how the critical times.

2.1. Boundary contributions

One of the interesting consequences of the bulk topol-
ogy of a topological insulator is the existence of the pro-
tected edge states. Here we will review what effect they
have on the return rate. Once we consider open systems
with edges where these states can exist we no longer have
momentum as a good quantum number and hence we
cannot use Eq. (17). Instead one can use the following
formalism [29–32]:

L(t) = detM ≡ det
[
1− C + C e iH1t

]
, (20)

where the correlation matrix C for the initial state is
Cij = 〈ψ0|Ψ †i Ψj |ψ0〉.

To extract the effects of the edge states on the return
rate one must perform a finite size scaling analysis for
the boundary term lB(t):

lN (t) ∼ l(t) +
1

N
lB(t). (21)
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The boundary return rate demonstrates very different
behaviour depending on the direction of the quench. We
will focus on the case where |δ| = 0.95. In this strong
dimerisation limit the effects are most clear. Figure 5
shows the strong asymmetry in the boundary term, which
can be extracted from finite size scaling, for quenches in
the two directions across the topological phase bound-
ary [16]. The very large jumps in Fig. 5a are due to the
role of the topologically protected edge states during time
evolution.

Fig. 5. The boundary contribution to the return rate
for quenches in the SSH model with (a) δ : −0.95 →
0.95, i.e. from a topologically trivial to a topologically
non-trivial phase, and (b) δ : 0.95→ −0.95, i.e. from a
topologically non-trivial to a topologically trivial phase.

Fig. 6. The eigenvalues of the Loschmidt matrix λi(t)
for (a) δ : −0.95 → 0.95, i.e. from a topologically
trivial to a topologically non-trivial phase, and (b)
δ : 0.95 → −0.95, i.e. from a topologically non-trivial
to a topologically trivial phase. In case (a) pairs of
eigenvalues become pinned to zero between alternating
critical times, causing the jumps which can be seen in
the boundary return rate lB(t) in Fig. 5a. The system
size is N = 40.

The origin of the large jumps in the boundary return
rate are caused by eigenvalues of the Loschmidt ma-
trix, λi(t), which become pinned to zero between critical

times, see Fig. 6. In fact, a direct comparison between the
contribution of these two eigenvalues to the return rate
and the boundary return rate shows remarkably good
agreement [16].

2.2. A potential relation to entanglement entropy

Curiously it appears that the critical time of the dy-
namical phase transition plays an important role also in
the time evolution of entanglement entropy which fol-
lows a quench [16]. Entanglement entropy is the von
Neumann entropy of a reduced density matrix ρA(t) =
TrB |Ψ(t)〉〈Ψ(t)| defined as:

Sent(t) = −Tr{ρA(t) ln ρA(t)}, (22)
with |Ψ(t)〉 = e− iH1t|ψ0〉 being the time-evolved state.
The system has been divided up into two blocks equally
sized blocks A and B. Figure 7 shows that the entan-
glement entropy oscillates at the exact frequency of the
critical time of the dynamical phase transition. The rea-
son for this remains currently unclear, but suggests some
deeper connection between these phenomena.

Fig. 7. The entanglement entropy for a quench in the
SSH model as in Fig. 5a. The solid dashed line is the
entanglement entropy for cutting two dimers. At short
times the system oscillates between this situation and A
and B being unentangled as entanglement slowly builds
up. The system size is N = 32.

3. Finite temperatures

The preceding sections focused exclusively on the case
where the system is initially in a ground state. In any
real experimental situation [33, 34] the system is likely
to be at a finite, if small, temperature. It is there-
fore interesting to generalise the concept of dynamical
phase transitions to finite temperatures and density ma-
trices [29, 35–37]. There is no unique way in which one
may want to make such a generalisation and several ver-
sions have been considered in the literature. Here we will
review several of these generalisations for the Loschmidt
echo, which is the absolute value of the Loschmidt ampli-
tude. For any generalisation we can define a return rate
as in Eq. (14).
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The first example we consider is of the Loschmidt echo
as a metric in Hilbert space [29]. To define a met-
ric for density matrices ρ(t) the Loschmidt amplitude
Lρ(ρ(0), ρ(t)) needs to satisfy:

i 0 ≤ |Lρ(ρ(0), ρ(t))| ≤ 1 and |Lρ(ρ(0), ρ(0))| = 1,

ii |Lρ(ρ(0), ρ(t))| = 1 if ρ(0) = ρ(t), and

iii |Lρ(ρ(0), ρ(t))| = |Lρ(ρ(t), ρ(0))|.

Following the definition of fidelity for density matri-
ces [38–40] leads to [41, 42]:

Lρ(t) ≡ |Lρ(ρ(0), ρ(t))| = Tr

√√
ρ(0)ρ(t)

√
ρ(0). (23)

Despite this looking like a rather unwieldy expression
for Hamiltonians of the form (1), and with ρ(0) be-
ing the canonical density matrix at a finite tempera-
ture T = β−1, Lρ(t) can be calculated exactly analyt-
ically [29].

An alternative inspired by the experiments [34] which
correspond to an initial density matrix is time evolved
and then projected onto a pure state [29] is

|Lp(t)|2 =
〈Ψ0

0 |ρ(t)|Ψ0
0 〉

〈Ψ0
0 |ρ(0)|Ψ0

0 〉
=∑

n

pn
p0
|〈Ψ0

0 |e− iHt|Ψ0
n〉|2. (24)

Alternatively, one could consider averaging over the pure
state Loschmidt amplitudes with a weighting determined
by an initial density matrix [36]:

Lav = Tr {ρ(0)S(t)} =
∑
n

pn〈Ψ0
n|e− iH1t|Ψ0

n〉, (25)

with S(t) being the time-evolution operator.
Another experimentally motivated expression is to re-

late the Loschmidt echo to the characteristic function of
work [35, 43]. In that case the Loschmidt amplitude is
given by

L̃av =
1

Z
Tr
{

e iH1t e− iH0t e−βH0
}

=

1

Z

∑
n

e−(β+i t)E0
n〈Ψ0

n|e iH1t|Ψ0
n〉, (26)

and describes a thermal average over the Loschmidt echo
of pure states.

Generically, it is found for these generalisations that
finite temperatures have the effect of destroying the cusp
in the return rate, see Fig. 8 for an example. One excep-
tion is for Lav in the effectively finely tuned case where
the occupation of every momentum mode is conserved by
a generalised Gibbs ensemble [36].

It is also possible to include the loss and creation of
particles during the time evolution by solving the Lind-
blad equation for the time evolution of the density ma-
trix in the Born–Markov approximation. As for most fi-
nite temperature cases one also seen finds that the cusps
which signature the dynamical phase transitions are re-
moved, except for very finely tuned cases [29].

Fig. 8. An example of the smoothing off of the cusp
in the return rate at finite temperatures. For a quench
in the Ising chain from g = 0.5 to g = 1.5 as in Fig. 2.
The critical time is calculated for the zero temperature
case. Here we have used the metric generalisation for
the Loschmidt echo |Lρ(t)|, see Eq. (23).

4. Concluding remarks

These lecture notes have sought to explicate, in a sim-
ple way, the principle concepts of dynamical phase tran-
sitions. Several archetypal one-dimensional topological
insulators have been used as examples. The topolog-
ically protected edge states have a profound influence
on boundary contributions to the return rate which is
used to characterise dynamical phase transitions, which
can be related to the appearance of special zero eigenval-
ues in the Loschmidt matrix M(t). There also appears
to be a little understood relation between entanglement
entropy and the critical timescales of dynamical phase
transitions. Finally we reviewed some ways in which the
Loschmidt amplitude can be generalised to finite temper-
atures, mixed states, and open systems.
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