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Topological properties may be induced or changed by the action of disorder. We investigate two examples of this
scenario: in the first, by showing that either trivial or topological two-dimensional superconductors, as a result of a
static random distribution of magnetic impurities, display topological phases. The second one involves using time-
dependent perturbations, which also have the general effect of inducing topology and, under appropriate conditions,
the appearance of topological properties is shown. In this case, we consider the effect on the topology of one-
dimensional systems, of time periodic or aperiodic perturbations consisting of kicks of spatially non-homogeneous
potentials. One finds different regimes characterized by localized, critical, or extended non-equilibrium states,
as a result of the time dependent perturbation. We further carry out the existence and characterization of the
topological edge states that occur both in the case of a static and dynamic perturbations. In the case of the static
disorder, the topological phases are characterized calculating the real space Chern number and various regimes for
the low energy density of states are identified and explained in the context of general properties of the symmetry
classes D and C. In the case of a time periodic perturbation (the Floquet regime) we contrast the dynamical
localization, and its properties, when using kicks either in the quasiperiodic spatially inhomogeneous potentials
of the Aubry–André type or in the case of kicks on the pairing amplitude in the presence of static Aubry–André
quasi-disorder. In both, we make use of lattice sizes drawn from the Fibonacci sequence. We also show that
aperiodicity in the sequence of time perturbations leads in general to delocalization, a regime characterized by a
fully random matrix Hamiltonian with the appropriate symmetry.
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1. Introduction

Even though topological phases are robust against
weak disorder, strong disorder in general induces local-
ization of wave functions [1, 2]. Localized wave-functions
are not expected to contribute to the non-trivial topol-
ogy, so the fate of the topological phase in the presence of
strong disorder has attracted interest [3–9]. Naively one
would expect that increasing disorder leads to complete
electronic localization and trivial topology. Interestingly
enough, in certain circumstances the effect of strong dis-
order may enhance and even stabilize non-trivial topo-
logical phases [8–10].

In the case of trivial topology, the effects of static dis-
order have been classified according to the time reversal
symmetry (TRS), spin rotation, and the space dimen-
sionality d [1, 11, 12]. If the discrete particle–hole and
chiral (sublattice) symmetries are absent, then the three
Wigner–Dyson classes emerge [1]: unitary (or class-A),
for TRS broken systems, irrespectively of spin rotation;
symplectic (or class-AII), for TRS preserving systems
without spin rotation invariance; orthogonal (or class-
AI), for systems which preserve both TRS and spin rota-
tion symmetries. For d = 1, all states are exponentially
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localized for any finite disorder (except for special cases
where disorder is spatially correlated, such as the quasi-
random Aubry–André potential [13]); for d=3, a region
of extended states exists, separated from localized states
by a mobility edge which moves with disorder strength,
thus leading to the Anderson localization transition when
the mobility edge crosses the Fermi level [14]. In the case
of two-dimensional systems in the orthogonal class, sev-
eral results show that the spectrum is composed only of
localized states [15–17]. For symplectic systems, there is
an Anderson localization transition, with regions of ex-
tended states occurring in the spectrum [3, 16, 18, 19]. In
the case of the unitary class, such as in the quantum Hall
effect, it was established that at the center of each Lan-
dau level band there is one critical state — an extended
state where the localization length diverges linearly with
system size [17, 20]. This holds in the unitary class when
spin rotation is conserved. In the case when both TRS
and spin rotation symmetry are broken, the physics was
found to be different [4–7]. It seems well established that
a band of extended states, and not a single state, shows
up. Depending on the model, this band can be made en-
tirely of critical states, or can be a band of truly extended
states. Interestingly enough, when the band is made of
critical states, the transition to the localized phase at the
critical energy is accompanied by a divergent localization
length reminiscent of a Berezinskii–Kosterlitz–Thouless
transition [21]. A one-dimensional system with a quasi-
random potential displays regimes with the various types
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of states, as a function of the amplitude of the potential
term. For small amplitudes, they are extended. Beyond a
certain amplitude, the states become localized and at the
transition point, they acquire a fractal nature, revealing
its critical behavior, in an intermediate regime between
the fully extended and the localized states [13].

Localization due to disorder may also be obtained dy-
namically. Specifically, for the case of a system with
delocalized states, it has been shown that imposing a
time dependent spatially non-homogeneous perturbation,
may lead to dynamical localization of the states under
appropriate conditions. For example, a periodic time-
dependent fully random potential leads to localization in
one-dimensional systems. On the other hand, a time-
periodic perturbation with a non-homogeneous quasi-
random potential, as the Aubry–André potential, leads
to regimes of extended, localized, and critical states [22].
The time-evolution operator describing the dynamics
of a time-periodic Hamiltonian at stroboscopic times,
Ĥ(t + T ) = Ĥ(t), is captured by Û(nT ) = e− i ĤeffnT ,
where Ĥeff is a time-independent Hamiltonian, often re-
ferred to as the Floquet Hamiltonian. Following one pe-
riod, the time-evolution operator can be written in terms
of its eigenstates |θm〉 and the quasi-energies εm, con-
nected to its actual eigenvalues, as Û(T ) = e− i ĤeffT =∑
m e− iεmT |θm〉〈θm|. †.
A closed form of the effective Floquet Hamiltonian

is not always obtainable, i.e., is not always possible
to find an effective time-independent Hamiltonian,
written in terms of local operators that would be
sufficient to describe the stroboscopic dynamics of the
system. This caveat is connected to the convergence
of the Magnus expansion, often employed to obtain
Ĥeff in the high-frequency regime (T � 1). Consid-
ering a driving protocol that is time-symmetric, i.e.,
Ĥ(t) = Ĥ(T − t), the time evolution operator can
be written as Û(T ) = e iλV̂ /2 e− i Ĥ0T e iλV̂ /2, with Ĥ0

the time independent Hamiltonian and V̂ the time
dependent perturbation, with amplitude λ. Using this
simple form, one can explicitly construct the Floquet
Hamiltonian by making use of the analogue of the
Baker–Campbell–Hausdorff (BCH) formula applied to
time symmetric problems [23], exp Ŷ exp X̂ exp Ŷ =

exp(X̂ + 2Ŷ − 1
6 [[X̂, Ŷ ], Ŷ ] + 1

6 [X̂, [X̂, Ŷ ]] + · · · ), as

Ĥeff = Ĥ0 +
λ

T
V̂ − Tλ

12
[Ĥ0, [Ĥ0, V̂ ]]

+
λ2

24
[[Ĥ0, V̂ ], V̂ ] + · · · . (1)

†We note that there is an ambiguity in the definition of the ef-
fective Hamiltonian since the Floquet quasi-energies can be shifted
by a multiple of ω = 2π/T . The quasi-energy Floquet first Bril-
louin zone is thus between −ω/2 and ω/2 and εmT is between −π
and π

In the limits of high-frequency (T � 1) and small kick-
amplitudes (λ � 1), one can truncate the effective
Hamiltonian in the first order as

Ĥeff = Ĥ0 +
λ

T
V̂ . (2)

Such expansion tells us that the small period regime is
equivalent to the static problem, with an appropriately
renormalized potential, and therefore the high frequency
regime is related to the static problem.

As an example, a simple tight-binding model perturbed
by either Anderson disorder or a Aubry–André like po-
tential was considered before [22]. The Aubry–André po-
tential is written as a local chemical potential of the form
µi = λ1 cos(2πα i + ϕ), where α is an irrational number,
and therefore the potential is incommensurate with the
lattice. A usual choice is α = (

√
5 − 1)/2, the inverse

golden ratio. Here we use α = αn, where αn = Fn−1/Fn
and Fn are the Fibonacci numbers, which are defined
recursively as Fn = Fn−1 + Fn−2, with F1 = F2 = 1.
Taking the limn→∞ αn one gets (

√
5 − 1)/2, i.e., an in-

verse of the golden mean. For the case of periodic (open)
boundary conditions one takes for system size L = Fn
(L = Fn+1) and with αn the chemical potential becomes
periodic with period L. One can, therefore, simulate the
effect of an Aubry–André quasiperiodic (or quasirandom)
potential, considering a sequence of the Fibonacci sizes
and taking α = αn, as above.

Perturbing periodically with a period T the tight-
binding model with hopping amplitude w, leads to a
set of eigenstates that in the small period regime, or
high frequencies, display the behavior expected of the
static problem with a potential amplitude scaled by T
(see Eq. (2)). For general period and potential ampli-
tude λ, the description requires a diagonalization of the
time-evolution operator over a period (the Floquet oper-
ator). The states may be characterized in each regime in
different ways. One possible way is to calculate the par-
ticipation ratio (PR) of the eigenstates or its mean value
over all eigenstates. The participation ratio for a given
eigenstate labelled by m is defined as Rm = 1/

∑
i |θmi |4.

The average PR, R = 〈1/
∑
i |θmi |4〉m,r, may be calcu-

lated as a function of λ and T . Here, 〈·〉m,r denotes
first the average over all the eigenstates |θm〉 =

∑
i θ
m
i |i〉

in the site basis |i〉, which are then averaged over dif-
ferent realizations r, where different realizations consist
of different choices of ϕ’s. The average PR quantifies
the average spreading of the eigenvectors in real space.
In the absence of the potential (λ = 0), all |θm〉 are
plane waves, for which R = L and for general delocalized
states R ∼ O(L), whereas for perfectly localized states
R = 1. In Fig. 1, we show the results for the average
normalized participation ratio (NPR) for a tight-binding
model, in a system with 145 sites. In the low period
and small amplitude regime one finds the transition from
the extended states, with large R/L, and the localized
states, with corresponding small R/L. The transition
line between the two regimes extends to finite values of
T and λ, and is characterized by critical states, as in the
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case of the static Aubry–André model. For larger values
there is a crossover between the extended and localized
states, whose proper interpretation in terms of a static
Hamiltonian would require the inclusion of higher order
terms, as the extra ones shown in the right-hand side
of Eq. (1). Using lattices whose sizes are obtained from
the Fibonacci sequence, qualitatively captures well the
main results obtained for much larger lattices [22], and
even for fairly small system sizes. For that reason we will
also use L’s chosen from the Fibonacci sequence, when
investigating the kicked Kitaev model, in Sect. 3.

Fig. 1. Phase diagram of the periodically kicked tight-
binding model, showing the normalized participation
ratio as a function of the period and kick ampli-
tudes, T and λ1, respectively. The kicks consist of
instantaneous quenched potentials of the form µi =
λ1 cos (2παni+ ϕ), with αn = Fn−1/Fn, a ratio of
two consecutive Fibonacci numbers, for a system of
L = F12 + 1 = 145 sites.

For topological systems a new class of localized states
arises, the edge states, that are robust under weak
disorder, provided some discrete symmetries are pre-
served [24, 25]. The interplay of topology and localiza-
tion was first analyzed in the context of the robustness
under disorder of the Hall conductivity quantization, in
the integer quantum Hall effect [26]. This is an example
of a Chern insulator that belongs to the symmetry class
A (all discrete symmetries are broken) in the standard
classification. For moderate disorder, the states in the
edges of the conduction and valence bands start to local-
ize. As disorder increases, the gap is totally populated
by localized states and the extended states carrying the
Chern number, the topological invariant that character-
izes these topological phases, shift towards one another
and annihilate, leading to the topological phase transi-
tion. As mentioned above, the difference between the
two classes is that, while in the symplectic class AII, a
finite region of extended states with a well defined mo-
bility edge remains until the transition takes place, there
is no mobility edge in the unitary class A systems. The
extended states carrying the Chern number are located
at particular single energies.

More recently topological states were proposed as a re-
sult of a set of (classical) magnetic impurities on top of a
conventional superconductor with their spin orientations
arranged in some helical way [27, 28]. A chain of mag-
netic adatoms, ferromagnetically arranged in the pres-
ence of spin–orbit coupling and placed on top of a two-
dimensional conventional superconductor, led to similar
results [29] and localized zero energy modes were detected
at the edges of adatom chain using STM: being a su-
perconductor, these edge states were interpreted as the
Majorana zero energy modes (MZEM) [30]. Other con-
figurations of magnetic impurities such as different chains
or islands [27–29, 31–53] also lead to topological proper-
ties [54–56]. If the magnetic impurities have arbitrary
orientations and locations, the pair breaking effect leads
to gapless superconductivity and eventually destruction
of superconductivity occurs for small concentration of im-
purities of the order of a few percent [57]. However, a
higher robustness of superconductivity to the increasing
number of magnetic impurities has been found if they are
correlated, particularly if their locations are not random
but organized in some patterns [58]. Several works show
that regularly positioned chains of adatoms give rise to
MZEM such as the cases of random, spiral AFM and FM
orientational orderings of the magnetic adatoms. Here
we consider the effect of random positional distributions
of magnetic impurities with correlated orientations on
a conventional superconductor with spin–orbit coupling
and show that topological properties are also induced.
On the other hand, triplet superconductors are topologi-
cal in the absence of impurities. Several two-dimensional
superconductors also have topological properties such as
the so-called p+ip pairing [59, 60]. Adding spin–orbit in-
teraction and a magnetic field either through its Zeeman
effect or due to the presence of vortices, a great variety of
topological phases are predicted [61]. Since both a triplet
superconductor and a magnetic chain induce topological
states, one may explore the combined effect of the two
by considering a set of magnetic impurities on top of a
triplet superconductor [41, 62]. It is also shown here that
the topology may be changed by adding magnetic impu-
rities, distributed randomly [63].

2. Effects of disorder in Z class superconductors

A single magnetic impurity in a conventional supercon-
ductor coupled to the conduction electron spin density
gives rise to a local bound state, known as the Yu–Shiba–
Rusinov (YSR) state [64–70]. As the exchange coupling
J between the impurity and the electron spin density in-
creases, a first order quantum phase transition (QPT) oc-
curs [71–73], at which point the gap function has a π shift
and the magnetization of the conduction electrons jumps
from zero to 1/2. The YSR states come in pairs that lay
inside the gap (one at positive and one at negative en-
ergy) and tend to lower energies as the coupling grows.
At the quantum critical point there is a level crossing,
such that the bound state has a small but finite energy.
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Increasing the number of impurities, more states appear
inside the gap (two per impurity) and as the coupling in-
creases, a series of quantum phase transitions occurs and
the magnetization of the conduction electrons changes in
increasing plateaus. If the number of magnetic impuri-
ties is large enough there are bound states inside the gap
that have zero energy and constitute self-conjugate Ma-
jorana fermions. It has been shown that the quantum
phase transition that results from the closing of the gap
as a function of the coupling between the local impurities
and the conduction electron spin density coincides with
the topological transition to a topological phase with the
Majorana fermions [51].

In the superconducting systems there are four sym-
metry classes [74]: superconductors with s-wave pairing
symmetry with a particle–hole symmetry corresponding
to a spin singlet where the operator squares to −1 are
characterized by a C class where time-reversal symmetry
is broken or a CI class where time-reversal symmetry is
present and squares to +1. There are also superconduc-
tors with p-wave symmetry of the class D where time-
reversal symmetry is broken, and with preserved time-
reversal symmetry, class DIII, where the time-reversal
operator squares to −1. In two dimensions both time-
reversal symmetry breaking classes, D and C, may be
characterized by a Z topological invariant. In the case
of time-reversal symmetry the p-wave superconductor,
class DIII, is characterized by a Z2 topological invari-
ant, while the s-wave superconductor, CI class is topo-
logically trivial. Adding magnetic impurities to a super-
conductor breaks time-reversal symmetry and therefore
one expects for both types of pairing symmetries a class
Z superconductor. The 1D Kitaev model that we will
consider ahead, belongs to the BDI class, which is also a
class Z superconductor.

In order to study the effect of magnetic impurities we
introduce a two-dimensional superconductor with spin–
orbit interaction in the presence of a uniform magnetic
field [61]. Spinfull electrons in the presence of a Zee-
man term (that breaks TRS) and in the presence of
the Rashba spin–orbit coupling are in a superconduct-
ing state with both singlet and triplet pairing symmetry
(parity is broken due to the presence of the spin–orbit
coupling). The Hamiltonian Ĥ = Ĥ0 + Ĥ∆ is given by
the sum of various terms, Ĥ0 = εkσ0−hzσz+ ĤR. Here,
εk = −2w(cos kx + cos ky) − µ is the kinetic part, w de-
notes the hopping parameter set in the following as the
energy scale, µ is the chemical potential, k is a wave vec-
tor in the xy plane, and we have taken the lattice con-
stant to be unity. The Zeeman splitting hz is responsible
for the magnetization and ĤR is the Rashba spin–orbit
term, ĤR = s ·σ = αR (sin kyσx − sin kxσy) where αR is
measured in the energy units and s = (sin ky,− sin kx, 0).
The vector σ = (σx, σy, σz) is the vector of the Pauli ma-
trices acting on the spin sector and σ0 is the 2×2 identity.
The pairing matrix reads ∆̂ = i (d · σ +∆s)σy. The
system has a rich phase diagram with trivial and topo-
logical phases. These are shown in Fig. 2 considering

dz = 0,∆s = 0 and choosing dx = ∆t sin ky, dy =
−∆t sin kx. The lines in the phase diagram correspond to
the gapless points that separate the different topological
phases. The superconductor we consider here is time-
reversal invariant if the Zeeman term is absent (it is not
of the p+ ip type). The system then belongs to the sym-
metry class DIII where the topological invariant is a Z2

index. If the Zeeman term is finite, TRS is broken and
the system belongs to the symmetry class D. The topo-
logical invariant that characterizes this phase is the first
Chern number C. If hz = 0 and the pairing is s-wave, the
system is in a topologically trivial phase: there is only
the bulk gap and no gapless (edge) states. In the case
of p-wave or when there is a mixture of s- and p-wave
components, and the amplitude of the p-wave pairing is
larger than the corresponding amplitude of the s-wave
case, there are two counter-propagating edge modes that
give opposite contributions to the total Chern number,
C = 0 (Z2 phase). As the Zeeman term is turned on, TRS
is broken. For small magnetization, the superconductor
is in a trivial phase with the Chern number C = 0. A fi-
nite magnetization causes a topological phase transition
to a phase with non-zero Chern number. This happens
both for the p-wave case and the s-wave case.

Fig. 2. Phase diagram of a triplet superconductor as
a function of chemical potential and the Zeeman split-
ting. C is the Chern number. In the case of a singlet
superconductor the phase diagram is similar, particu-
larly at finite hz. Without the Zeeman term, however,
the system is topologically trivial.

In this section we consider the possibility of inducing
topological order as a result of adding orientationally cor-
related magnetic impurities, in growing concentrations,
ci, and distributed randomly in over ciN sites of the
underlying N -sites square lattice (c = 1 is the uniform
field case). The impurities act as local Zeeman fields,
aligned along the z-direction. The average over disorder
is obtained over 100 impurity configurations. Consid-
ering that at half-filling (µ = 0) any infinitesimal uni-
form field induces chiral modes on the edges of the two-
dimensional system (see Fig. 2), one may expect that a
finite concentration of magnetic impurities may induce
chiral edge modes and non-trivial topology.
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The topological invariant Chern number is naturally
defined in case the system is translationally invariant.
Introducing disorder will break this invariance. Impos-
ing twisted boundary conditions we may generalize the
definition of the Chern number considering a circulation
over the boundary conditions instead of over the edges of
the Brilloun zone [26, 62, 75, 76]. In Fig. 3 we show re-
sults for the real-space Chern number for two cuts, one at
µ = 0 and the other at µ = −3, as a function of impurity
concentration, ci, and for different amplitudes of the local
Zeeman field, hz. Due to disorder averaging the Chern
number is not necessarily an integer (even though it is
an integer for each disorder configuration). Nevertheless,
a topological phase is characterized by an integer Chern
number. For high impurity concentrations the results are
qualitatively similar to those of the uniform Zeeman field
shown in Fig. 2. The results clearly show the appearance
or change of topological regimes due to the effect of the
TRS breaking that results from the introduction of the
random magnetic impurities.

Fig. 3. The Chern number for a triplet supercondu-
tor for µ = 0 (left) and µ = −3 (right) for different
impurity concentrations, ci, and different Zeeman field
amplitudes, hz. The green region stands for a thermal
metal regime, where the Chern number is not quantized.

In the case of uniform field the spectrum is usually
gapped, with the exception of the transition lines shown
in Fig. 2 where the spectrum becomes gapless. The level
structure is however different if there is disorder, and
states inside the gap appear and typically grow in number
as disorder increases. This behavior is reflected in the
density of states (DOS).

The DOS is obtained by numerically diagonalizing the
Bogoliubov–de Gennes (BdG) equations for a finite sys-
tem, of size 21×21 or using the recursive Green function
method which allows larger system sizes.

In Fig. 4, top parts, we illustrate the behavior of the
DOS for the case of an s-wave superconductor with chem-
ical potential µ = 0. In the left-top part we consider
hz = 4 and change the concentration, and in the right-
top part we fix ci = 0.3 and change hz. In both cases,
increasing ci or hz, increases the disorder. The gap gets
filled with states, and the density of states at low ener-
gies increases and is finite at zero energy. Even though
the gap gets filled, the coherence peaks at the gap lo-

cation remain clear, even though for large concentra-
tions they are less sharp. This is similar to the result
obtained for a random distributions of vortices but in
this case the density of states at low energies behaves as
ρ(E) ∼ Ea, where the exponent a depends on the vortex
concentration [77]. With increasing concentrations or in-
creasing hz the zero energy peak decreases since one is
approaching a regime where a gap with magnetic origin
appears.

Fig. 4. Density of states for a s-wave superconductor
(top parts) and a p-wave superconductor (bottom parts)
with magnetic impurities.

The case of the p-wave triplet superconductivity with
chemical potential µ = 0 is shown in Fig. 4, bottom parts.
Small values of ρ(E = 0) correspond to gapped regions
that are seen for small concentrations and small values
of hz. As disorder increases, the density of states in-
creases inside the gap (as in the s-wave case). After the
gap closes, and there is a transition to a thermal metal
regime, the density of states at zero energy has a zero
value, which grows to a finite value and a sharp peak
that increases with disorder, if the concentration is not
too large. This behavior is characteristic of a disordered
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D class superconductor [78, 79]. It signals the presence
of a thermal metal and corresponds to the green region in
the phase diagrams of Fig. 3. In the thermal metal regime
the system is gapless and only the thermal Hall conduc-
tance is quantized. At the transition where the density
of states is supposed to vanish like ρ(E) ∼ |E| log |E|,
one expects the presence of critical states, intermediate
between extended and localized states. Close to ci = 1,
however, the zero energy peak decreases. This is partic-
ularly visible for µ = 0 (for hz ≤ 5). As can be seen
from Fig. 2, one enters a trivial gapped regime in the
uniform case. A growing zero energy DOS peak charac-
teristic of the thermal metal regime is seen for ci = 0.5.
For ci = 0.8 we see that, contrarily, the density of states
has a dip at zero energy, as mentioned above.

3. Effects of dynamic disorder
on 1d Kitaev model

After studying the effects of static disorder, in this
section we focus on the dynamic disorder in topologi-
cal systems. For this, we consider the time-dependent
Hamiltonian

Ĥ(t) = Ĥ0w + Ĥ0∆ + Ĥ0µ + Ĥ1∆(t) + Ĥ1µ(t), (3)
where Ĥ0w = −

∑
i(wĉ

†
i ĉi+1 + H.c.) is the kinetic en-

ergy, Ĥ0∆ = −
∑
i(∆0ĉ

†
i ĉ
†
i+1 + H.c.) is the supercon-

ducting p-wave pairing and Ĥ0µ = −
∑
i µ0iĉ

†
i ĉi is the

chemical potential, and H.c. stands for the Hermitian
conjugate of the preceding terms. The fermionic cre-
ation (annihilation) operator at site i is ĉ†i (ĉi); w and
∆0 are the homogeneous hopping and superconducting
p-wave pairing between neighboring sites, respectively.
The fourth term in the Hamiltonian Ĥ1∆ = −

∑
τ δ(t −

tτ )
∑
i(∆1 ĉ

†
i ĉ
†
i+1 + H.c.) are the kicks in spatially ho-

mogeneous p-wave pairing and finally the last term is
Ĥ1µ = −

∑
τ δ(t− tτ )µ1iĉ

†
i ĉi. The inhomogeneous chem-

ical potentials are µbi = µb + λb cos(2παni + ϕ), with
b = 0, 1 and αn = Fn−1/Fn as specified in Introduc-
tion ‡. The last two terms in the Hamiltonian are applied
onto the system at times tτ and the integer τ counts the
number of applied kicks. Note that we either consider
kicks in quasiperiodic chemical potential (thus setting
∆1 = µ1 = λ0 = 0 and we mostly focus on µ0 = 0) or
we consider kicks in homogeneous pairing ∆1 (by taking
∆0 = µ0 = µ1 = 0 and λ1 = 0).

The unperturbed Hamiltonian, Ĥ0 = Ĥ0w + Ĥ0∆ +
Ĥ0µ, is for constant µ0i = µ0 the 1D Kitaev model [80].
When |µ0| < 2w the system is in a topological phase

‡We note that by taking either rational approximation or irra-
tional value of α makes no difference when it comes to either the
bulk properties or the number of Majorana edge states. The dif-
ference, however is in the number of normal fermionic — Andreev
edge states, in the case of irrational α value there are typically a
few more such states present for comparable system sizes

with non-vanishing winding number (if ∆0 6= 0) and if
|µ0| > 2w the system is topologically trivial. At |µ0| =
2w the system is gapless as well as when ∆0 = 0. This
line separates two topological phases, whereas |µ0| = 2w
separates the topological phases from the trivial regimes.
In the topological phases, if the system is finite, there
are edge Majorana modes, that decay exponentially from
the edge towards the bulk of the chain. When ∆0 = w
the edge states are perfectly localized at the edge. In
a translational invariant system the single-particle states
at ∆0 = w have a dispersionless flat band (FB) with
energy 2w.

Fig. 5. Comparison of the phase diagrams of spinless
fermions for the two types of periodic kicks as quantified
by the NPR for kicks in chemical potential λ (parts (a–
c)) and in pairing ∆ (parts (d–f)) for low (T = 0.01,
parts a,d), intermediate (T = 0.5, parts b, e) and high
period (T = 2, parts c, f) regimes. The system size was
L = F12+1 = 145, µ0 = µ1 = 0 and we used 10 disorder
realizations.

We report in Fig. 5 the phase diagrams for two types of
periodic kicks. In the left column, we consider the Kitaev
chain (we set w = 1 as the energy unit) with µ0 = 0,∆0 6=
0, λ0 = 0, and take a time-dependent perturbation with
λ1 6= 0 and ∆1 = 0. In the right column, we consider
µ0 = 0,∆0 = 0, λ0 6= 0 and λ1 = 0,∆1 6= 0. Therefore, in
the first column the spatially quasi-periodic potential is
due to the time dependent perturbation (λ0 = 0, λ1 6= 0),
while in the second column the disorder is due to the time
independent term (λ0 6= 0, λ1 = 0) and the kicks are the
result of a time-dependent pairing (∆0 = 0,∆1 6= 0). The
phase diagrams are parametrized by the average NPR, as
shown in Fig. 1. In part Fig. 5a we also denote two special
points, the FB point with a dispersionless flat band and
the duality point AA, which denotes the metal–insulator
transition point in the absence of pairing.
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For small periods, T = 0.01 (high frequency), the
phase diagram is qualitatively the result for a static prob-
lem with a renormalized λ1/T in the first case and ∆1/T
in the second case. As in the case of Fig. 1 the lighter
color regimes correspond to extended states and then
there is a transition to a regime of critical states and
another transition to a regime of localized states. In this
model the regime of critical states is of finite extent, in
contrast to the transition line found in the problem with
no pairing. The localized nature of the flat band part
clearly determines that close to ∆0 = 1 (or ∆1/T = 1,
even though since in this case ∆0 = 0 it cannot be argued
straightforwardly that we are perturbing around the flat
point) the extended nature of the states for small λ1/T
or λ0 changes to critical states.

As the period T increases, the zeroth order of the BCH
approximation does not hold anymore and a behavior
characteristic of the dynamic disorder emerges. At µ0 =
0 the region of critical states separates in two regimes
with a clear distinction of the average NPRs, at least for
intermediate periods, such as T = 0.5 in the case of λ1

kicks (Fig. 5b). For larger periods, the plateau structure
smears out. If µ0 6= 0 the change from the delocalized
to the localized regime occurs gradually and the plateaus
are smeared out. Also, if the kicks are due to pairing
(∆1 6= 0, λ1 = 0) the second plateau is less clear.

The nature of the plateaus is better understood by
looking at the distribution of NPRs. This is shown in
Fig. 6, for points marked in the phase diagram of Figs. 5b
and e. A typical extended system has a strongly peaked
NPR distribution at values Õ(1). A point in the first
plateau has a distribution peaked at smaller values of
NPR, clearly distinguishing it from the extended states,
confirming that the critical states have a spatial exten-
sion that is intermediate between the extended states and
the localized states. These have a distribution peaked
at small NPR values. Interestingly, the states in the
second plateau have a two-peak distribution of NPRs,
with one peak at the critical states range and another at
small values of NPR, as the localized states. As Fig. 6
also shows, this is not seen when the kicks are the result
of pairing (∆1 6= 0).

To acquire a better understanding on the physical as-
pects of these different types of states, we report in Fig. 7
the wave functions (or more appropriately the density
probabilities) for the points indicated in Fig. 5b, ex-
tended (Dµ), critical (Cµ) and localized (Lµ), for the case
of potential kicks, as well as their corresponding particle
and hole weights, u and v in the standard BdG represen-
tation. The intermediate nature of the critical states is
clearly illustrated.

The response of the system to a periodic perturba-
tion is fully characterized by the Floquet operator U(T ).
In Fig. 8, we compare the NPR of the eigenstates of
the Floquet operator in different regimes, selecting the
four phases identified, as a function of the quasi-energies.
Both cases of potential and pairing kicks are considered.
Since we are focusing on the case of µ0 = 0 we are

Fig. 6. Distribution of NPR values obtained across the
whole eigenstate spectrum for different representative
points in the phase diagram with T = 0.5, as marked in
Figs. 5b and e, for both types of kicks we investigate for
the system size L = F17 + 1 = 1598.

perturbing the system that is originally in a topologi-
cal regime. In the unperturbed case, using open bound-
ary conditions, there are the Majorana zero energy edge
modes. In the regime of delocalized states the participa-
tion ratio scales with the system size, while in the critical
regimes it scales as Lβ , with β ∼ 0.2 [81]. In the delo-
calized regime the zero energy states with a small NPR
are clearly seen. Other states with small NPR appear
but with finite energy. In the critical regime two types
of behavior emerge. In a first case, Cµ and C∆ there
is some mixture of extended states (even though with
smaller NPR values as compared with the regime of the
left part) and states that have smaller NPRs. In the sec-
ond regime of critical states, there is a clear mixture of
states with different ranges of NPRs. This is particularly
noticeable in the case of potential kicks and there is a
separation of both types of states in quasienergy space
indicating the appearance of a mobility edge [81]. In the
case of pairing kicks, while there are two separate sets of
states with large and small NPRs, with the smaller set
with values characteristic of localized states, there is no
clear quasienergy separation and therefore the mobility
edge in the quasienergies is less prominent. This is con-
sistent with the two peak NPR distribution structure of
Fig. 6a for the case of potential kicks, while there is a
broader distribution seen also in 6b for the pairing kicks
and provides further insight into the structure of second
plateaus seen in parts in Fig. 5b and e, respectively. In
the right parts of Fig. 8 all states have small NPRs char-
acteristic of localized states.

We further consider aperiodic kicks, i.e., by using
kicks which are not equally separated in time, aim-
ing in understanding in how robust are the localiza-
tion properties obtained in the case of periodic kicks.



Static and Dynamic Disorder in Topological Systems: Localized, Critical and Extended States 1187

Fig. 7. Examples of delocalized, critical and localized states, for points in the phase diagram defined in Figs. 5b. The
two critical states shown in the middle parts are connected via the particle–hole symmetry, i.e., the weights of u and v
are interchanged and their quasi-energies are symmetric.

Fig. 8. Normalized participation ratio for each eigenstate of the Floquet operator, using parameters corresponding to
different points in the phase diagram (see Fig. 5), due to kicks in the chemical potential and in the pairing. We compare
two diffent lattice sizes, L = 145 and 1598, so as to highlight the extended and localized nature of state states. Only
half of the symmetric quasienergy spectrum is shown for each size.

To model that, we assume that the time between two
consecutive kicks Tτ is a stochastic variable distributed
with equal probability between times T − δt and
T + δt. Thus, the time of the τ -th kick is given as
tτ = tτ−1 +T + δtτ , with δtτ being chosen in the interval
(−δt, δt), with δt < T so as to obey causality. The time
evolution operator after τ kicks is, therefore,

Ûτ = Û(Tτ )Û(Tτ−1) · · · Û(T1), (4)

with Tτ = tτ − tτ−1 and Û(Tτ ) = e− i Ĥ0Tτ e− iλV̂ . This
leads in general to delocalization. We report in Fig. 9
that as the number of kicks τ increases, the average NPR
converges to a value that is consistent with the value ob-
tained from a fully random matrix with the appropriate
symmetry. We compare the case with no superconduct-
ing pairing (class A) with the cases with pairing (class
D). Calculating the exponential of a fully random matrix
with the symmetry of class A leads to a set of eigenstates
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whose NPR is 1/2. The same exercise for a matrix in class
D leads to an NPR of 1/3. The results show that as a
function of the number of kicks τ , the results converge to
the corresponding asymptotic limits for each class. Since
the eigenstates of random matrices are completely delo-
calized, this indicates that aperiodic kicks cannot sustain
the localization we have obtained in the case of periodic
kicks before. One may define a scale, τc, that charac-
terizes the convergence to those limits. For the case of
the Aubry–André kicks [22], the characteristic number
of kicks τc is nearly proportional to the system size L.
Besides, the ratio τc/L displays a power law behavior on
the aperiodicity, (τc/L) ∝ (δt/T )κ, with κ ≈ −2.

Fig. 9. Stroboscopic evolution of the average normal-
ized participation ratio in the case of aperiodic kicks
as a function of the number of kicks. We focus on the
case of kicks in the onsite energies with a quasi-periodic
fashion, i.e., for λ1 6= 0. The lattice size used is L = 145.

Fig. 10. Evolution of conjugacy of the Majorana
modes with either spatially homogeneous kick, µ1 =
0.2, λ1 = 0 ((a) and (c)) or spatially quasi-periodic kick
µ1 = 0, λ1 = 0.2 ((b) and (d)). We use a small time
aperiodicity of δt = 0.1T , the lattice size is L = 145
and λ0 = ∆1 = 0.

Turning back to the case of periodic kicks, we notice
that as a result of a periodic time perturbation, edge
states may be induced even if the unperturbed system
is topologically trivial, in a process often referred to as
topological Floquet engineering. In the case of a su-
perconductor these edge states are the Majorana modes.
Therefore, in our problem in general there may appear
the Majorana modes, either because one starts from a
topological regime or due to their appearance as a result
of the periodic perturbation. Also, states at the top of
the Floquet zone may be induced. Due to the particle–
hole symmetry of the BdG equations these states are also
Majorana-like but with finite energy, ε = ω/2, for a per-
turbing frequency ω. These finite quasienergy Majorana
modes are called π Majorana modes, since εMT = π.
The various Majorana modes are present in the case of
delocalized and critical regimes. Its manifestation, how-
ever, is masked when the kick period increases since the
gaps in the quasienergy spectrum get filled with states.
As the NPR analysis shows, if considering regimes in the
phase diagram corresponding to either the second plateau
or in localized regimes, points M and L, respectively,
there are various states with small NPR values and the
localized nature of the Majorana edge modes is also ob-
served in other states resulting from the effect of disorder.
Moreover, edge states (often described as the Andreev
bound states) may also appear as a result of the disor-
der. Although very suggestive, zero quasienergies and
small NPR values are not sufficient to characterize a Ma-
jorana mode. One may compute [81] the self-conjugacy
η =

∑
i ηi, with ηi ≡

∣∣|ui|2 − |vi|2∣∣ and ui and vi be-
ing the particle and hole coefficients of the Bogoliubov
quasiparticle at site i. The value of η is vanishing for
the Majorana states, (γM = γ†M ), from which follows
that ui = v∗i . When the kicks are aperiodic, as studied
in various topological systems [81–84], after a few kicks
the quasi-energy spectrum in general becomes dense, the
gaps are filled with states, and in the system considered
in this work the criteria of small energies of NPRs be-
come harder to distinguish the normal fermionic local-
ized states from any surviving Majorana modes. There-
fore the self-conjugacy is particularly useful to distinguish
between the nature of the two states. This is shown in
Fig. 10, where we consider potential kicks, i.e., kicks on
the on-site energies with either a homogeneous or a spa-
tially quasiperiodic perturbation, aperiodically in time to
study the robustness of the Majorana modes. Also, we
consider different types of modes. A Majorana mode γa
[γ′a] is created from the FB point, and multiple Majorana
modes γb [γ′b] from topological regime. Starting from the
trivial regime, the Majorana mode is a consequence of
the perturbation. Deviating from periodicity the Majo-
rana character is quickly lost [81]. Starting from the flat
band point (γa, γ′a) we see that the self-conjugacy remains
small as the kicks progress and therefore the Majorana
character is preserved approximately. On the other hand,
for any other point γb, γ′b we see that the self-conjugacy
increases with τ but even for around 1000 kicks it is still
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rather small and considerably smaller than for a normal
fermionic mode (of the order of 10−1−1). In the long time
limits, the localized nature of the modes is completely
lost, but the perfectly localized Majorana at the flat band
point is quite robust, preserving its self-conjugacy.
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