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The Uhlmann connection is a mixed state generalization of the Berry connection. The latter has a very
important role in the study of topological phases at zero temperature. Closely related, the fidelity is an information
theoretical measure of distinguishability between quantum states. We show how one can use the fidelity and the
Uhlmann connection to study phase transitions at finite temperature. We apply the analysis to free fermion
Hamiltonians in 1D exhibiting symmetry protected topological order at zero temperature and also to the BCS
theory of superconductivity. We show how one can study finite-temperature dynamical phase transitions by means
of the fidelity and interferometric Loschmidt echoes. Moreover, we explain the physical and mathematical origin
of the different behaviour of the two Loschmdit echoes by means of the associated susceptibilities.
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1. Introduction

The classification of phases of matter is a remarkable
problem in theoretical physics. The Landau theory of
phase transitions [1, 2] accurately explains a large class of
phases of matter by describing the behaviour of a conve-
niently chosen local order parameter and associated cor-
relation functions. Topological phases of matter, and in
particular, symmetry protected topological phases, such
as topological insulators and superconductors [3], consti-
tute a new paradigm in condensed matter physics. Unlike
standard phases of matter which are described in terms
of local order parameters, these phases of matter are de-
scribed in terms of global topological invariants, such as
the TKNN invariant (named after Thouless, Kohmoto,
Nightingale and den Nihjs) [4], mathematically a Chern
number associated to a vector bundle over the Brillouin
zone, robust against perturbations of the system. An
example of such a phase is that of the anomalous Hall in-
sulator [5], which falls into the class of Chern insulators.
The topological phases of free fermions were systemati-
cally classified through K-theory, by Kitaev [6]; and ho-
motopy theory and Anderson localization, by Schnyder,
Ryu, Furusaki and Ludwig [7, 8].

Fidelity is an information theoretical quantity which
has been widely used in the study of phase transi-
tions [9–12]. Recently, the problem of the effect of tem-
perature on topological phase transitions has been ad-
dressed. For this purpose, in addition to the fidelity, the
Uhlmann connection [13, 14], a mixed state generaliza-
tion of the Berry connection, has been considered and
studied in the context of systems exhibiting symmetry
protected topological phases at zero temperature [15–17].
The reason for this is that the Berry connection has a re-
markable role in the description of topological phases,
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as it provides a natural connection in the Bloch vector
bundle of occupied states over the Brillouin zone, in the
presence of translation invariance. The topological in-
variants can then be built from invariant polynomials on
the Berry curvature.

In addition, dynamical phase transitions, which occur
when one studies the system after a sudden quench, have
been approached, for finite temperatures, through fidelity
and information geometry quantities [18].

In this work, we review connection of fidelity to the
geometry and gauge theory arising from the phase am-
biguity of quantum mechanics. We do this both at the
pure state level and mixed state level, motivating the use
of the fidelity and the Uhlmann connection to approach
the problem of phase transitions in general. Most of the
results presented here are based on Refs. [15, 18].

The paper is structured as follows. In Section 2, we
recall some geometry and topology arising naturally in
the context of quantum mechanics, exemplifying with
spin- 12 coherent states and a Chern insulator. In Sec-
tion 3, we connect this geometry and topology to the
quantum fidelity and introduce the Uhlmann connection.
In Section 4, we apply these concepts to phase transi-
tions in free fermion systems, both topological and non-
topological. Next, in Section 5, we consider two gener-
alizations of the Loschmidt echo, a figure of merit for
dynamical phase transitions, for the case of finite tem-
peratures, one involving the fidelity and the other an in-
terferometric quantity. We discuss its physical and math-
ematical origins by studying the associated susceptibili-
ties. Finally, in Section 6, we present some conclusions.

2. Geometry, topology, and gauge theory
in Quantum Mechanics

A pure state in quantum mechanics is a ray, i.e., it is
only defined modulo multiplication by a non-zero scalar.
In other words, given a vector |ψ〉 in the Hilbert space H,
we are instructed to identify |ψ〉 ∼ λ |ψ〉, with λ ∈ C×.
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This means that a state is a one-dimensional subspace
of H and the set of all states is the quotient space
PH = (H − {0})/C×, the projective space associated
to H. We could restrict ourselves to normalized states,
i.e., SH = {|ψ〉 ∈ H : 〈ψ|ψ〉 = 1} and then one real-
izes that a state is a normalized vector modulo a phase,
i.e., PH = SH/U(1). We, therefore, have a U(1)-gauge
degree of freedom in specifying a state. The gauge invari-
ant information is uniquely specified by the orthogonal
projector

P = |ψ〉 〈ψ| = e iφ |ψ〉 〈ψ| e− iφ, for all e iφ ∈ U. (1)

More generally, we can think of the space of
k-dimensional subspaces of H, the Grassmannian of k-
planes in H, Grk(H). A k-dimensional subspace V ⊂ H
is specified by giving an orthonormal basis {|ψi〉 , i =
1, ..., k}. However, if U = [uij ]1≤i,j≤k ∈ U(k) then

|ψ′i〉 =
∑
j

uji |ψj〉 , i = 1, ..., k, (2)

is another orthonormal basis for V and, hence, we have a
U(k)-gauge degree of freedom in defining V ⊂ H through
an orthonormal basis. A gauge invariant description of
this subspace V is specified by the projector

P =

k∑
i=1

|ψi〉 〈ψi| =
k∑

i,j,l=1

uji |ψj〉 〈ψl|u
l
i,

for all U = [uij ]1≤i,j≤k ∈ U(k). (3)

This unitary gauge ambiguity in specifying a state or
a subspace has important physical consequences. More-
over, associated with this gauge ambiguity there is a nat-
ural gauge field which arises from the Hilbert space struc-
ture. Specifically, the u(1)-valued 1-form

A = 〈ψ| d |ψ〉 , with A = −A, (4)
defines the U(1)-Berry connection and the u(k)-valued
1-form

A = [〈ψi| d |ψj〉]1≤i,j≤k, with A† = −A, (5)
defines the U(k)-Berry connection.

The Abelian Berry connection allows us to split the
tangent spaces of SH into vertical directions, i.e., those
which do not change the physical state, and horizon-
tal directions, those that effectively change the physi-
cal state. Since |ψ〉 defines the same state as e iφ |ψ〉 =
(1 + iφ + . . . ) |ψ〉, the vertical directions are immedi-
ately seen to be those that are a purely imaginary mul-
tiple of the state. The horizontal directions are simply
the orthogonal complement (induced by the inner prod-
uct). Namely, given a curve of normalized vectors in H,
{|ψ(t)〉 : t ∈ [0, 1]}, we can write

d |ψ(t)〉
dt

=

A(d|ψ〉/dt)︷ ︸︸ ︷
〈ψ(t)| d

dt
|ψ(t)〉 |ψ(t)〉︸ ︷︷ ︸

Vertical

+
d |ψ(t)〉

dt
−〈ψ(t)| d

dt
|ψ(t)〉 |ψ(t)〉︸ ︷︷ ︸

Horizontal

, for all t ∈ [0, 1].

(6)
With this splitting of the tangent spaces one can define
parallel transportation along a curve of states. The re-
sult is that, under parallel transport,

|ψ(0)〉 −→ e−
∫ 1
0

dtA(d|ψ〉/dt) |ψ(1)〉 . (7)
The obstruction to integrability, in the sense of the Frobe-
nius theorem [19], of the horizontal distribution, i.e.,
the collection of the horizontal spaces, associated to the
Berry connection, is given by the Berry curvature two-
form

F = dA = Tr
(
P dP ∧ dP

)
.

The Berry curvature is also associated to the parallel
transport along an infinitesimal loop.

Given this splitting of the tangent spaces, we can then
define a Riemannian metric on PH by the gauge-invariant
formula

ds2 = ||d |ψ〉 − 〈ψ| d |ψ〉 |ψ〉 ||2 =

〈dψ| (I − |ψ〉 〈ψ|) |dψ〉 = Tr
(
P dP dP

)
, (8)

which is the celebrated Fubini-Study metric in PH, also
known as the quantum metric or the Bures metric. The
quantum metric and the Berry curvature are the real and
imaginary parts of a Hermitian tensor — the quantum
geometric tensor.

For more details on the fiber bundles and associated
structures considered here, presented from a physical
point of view, the reader is referred to Refs. [20, 21]. For
a more detailed mathematical exposition on the theory
of fiber bundles and differential forms, see Refs. [19, 22].

2.1 H = C2: Spin- 12 coherent states
and topological phases of matter

When H = C2, i.e., for the case of a spin- 12 parti-
cle, we have that the space of states is the Riemann
sphere CP 1 ∼= C ∪ {∞} ∼= S2, also known as the Bloch
sphere in the physics literature. If we write n for a three-
dimensional unit vector parametrized by spherical coor-
dinates (θ, φ),
n = (x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ), (9)

then we can obtain a representative of the state associ-
ated to it, by the formula

|n〉 ≡ |z〉 =
1

(1 + |z|2)1/2

(
1

z

)
, (10)

where

z =
x1 + ix2

1 + x3
= e iφ tan

(
θ

2

)
(11)

is the complex coordinate associated to stereographic
projection with respect to the south pole of the sphere.
The state |z〉 is the so-called spin- 12coherent state. No-
tice that this representative is only valid for x3 6= −1,
i.e., everywhere on S2 except at the south pole, see
Fig. 1. Mathematically, |z〉 defines a local section of a
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non-trivial line bundle over S2, whose fibre over a state is
the state/ray itself — the monopole bundle. To describe
the full space of states, we need another trivialization
valid in a neighbourhood of the south pole. If we take
w = 1/z, then

|z〉 =
z

|z|
× 1

(1 + |w|2)1/2

(
w

1

)
. (12)

Notice that the coordinate w corresponds to stereo-
graphic projection with respect to the north pole and
w = 1/z is the complex coordinate change which endows
S2 with the structure of a complex manifold. Moreover,

1

(1 + |w|2)1/2

(
w

1

)
(13)

represents any quantum state for w 6=∞, i.e., all of them
except the one corresponding to the north pole. The re-
lation between the two descriptions of the states is cap-
tured by the gauge transformation z/|z| defined in the
sphere minus the poles. The Berry connection gives rise
to a connection in the monopole bundle given by, in the
gauge associated to |z〉,

A = 〈z| d |z〉 =
1

2

z̄dz − zdz̄

(1 + |z|2)
. (14)

The metric in the space of states is the Fubini-Study met-
ric:

ds2 =
dzdz̄

(1 + |z|2)2
=

1

4

(
dθ2 + sin2 θdφ2

)
, (15)

which shows that the Bloch sphere has radius 1/2.

Fig. 1. The space of states of a two-dimensional quan-
tum system is a sphere S2. A complex coordinate is
obtained by stereographic projection.

The Berry curvature is given by

F = dA =
dz̄ ∧ dz

(1 + |z|2)2
=

i

2
sin θdθ ∧ dφ =

i

2
n · (dn× dn) =

i

4

εijkx
idxj ∧ dxk

||x||3
, (16)

which corresponds to a “magnetic field” B =
−(1/4π)x/||x||3 of a monopole of charge −1 sitting at
the origin of R3. In fact, the integer quantity

∫
S2

iF

2π
= −1 ∈ Z (17)

is a topological invariant known as the 1st Chern number,
which measures the obstruction of this monopole bundle
to being topologically trivial, i.e., isomorphic, as a vector
bundle, to S2 × C.

Next, suppose we have a gapped 2D charge symmetric
fermion quadratic lattice Hamiltonian with translation
invariance described by

H(k) = d(k) · σ, (18)
where σ = (σ1, σ2, σ2) are the Pauli matrices, k is the
quasi-momentum which lives in the first Brillouin zone
(BZ). The first Brillouin zone is, topologically, a torus,
since we are instructed to identify momenta which differ
by reciprocal lattice vectors. The gap condition can be
stated simply as d(k) 6= 0, for all k ∈ BZ. The ground-
state is obtained by filling the lowest energy band

Lk := {|ψ〉 ∈ C2 : H(k) |ψ〉=− |d(k)| |ψ〉}, k ∈ BZ.
(19)

The (disjoint) union of these one-dimensional subspaces
is the (occupied) Bloch bundle L =

∐
k∈BZ Lk → BZ ∼=

T 2. Take n(k) ≡ d(k)/|d(k)|, which is well-defined
because of the gap condition. Then, the spin- 12 coher-
ent state |−n(k)〉 ≡ |−1/z̄(k)〉, where z(k) is obtained
by stereographic projection as before, is a representa-
tive for Lk. Mathematically, L is the pullback bundle
of the monopole bundle over the Riemann sphere by the
map Φ : BZ 3 k 7→ −n(k) ∈ S2. As a consequence,
the first Chern number of L is the degree or winding
number of Φ:∫

BZ

iF

2π
=

1

4π

∫
BZ

d(k) ·
(
∂d(k)
∂kx

× ∂d(k)
∂ky

)
||d(k)||3

d2k ≡ deg Φ. (20)

Moreover, the transverse Hall conductivity is precisely
given by q2/(2π) times the Chern number [4, 23], in
natural units, where q is the charge of the fermions
in the theory. This shows an intricate relation be-
tween the geometry and topology of the states of
the system and the physical response to an external
gauge field.

3. Fidelity, Uhlmann connection
and phase transitions

Fidelity is an information theoretical notion. It is
a measure of distinguishability between two quantum
states. Whenever a phase transition occurs, the state
of the system changes dramatically and fidelity captures
this change. For pure states |ψ〉 , |ψ′〉 ∈ H,

F (|ψ〉 , |ψ′〉) = |〈ψ|ψ′〉|. (21)
If |ψ(g)〉 is a groundstate of a family of Hamiltonians
{H(g)}, the quantity

F (|ψ(g)〉 , |ψ(g + δg)〉), with |δg| << 1, (22)
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will generically be close to 1. When g reaches a point of
phase transition, F will have a sudden drop. The fidelity
analysis provides a method to probe quantum phase tran-
sitions.

Associated to the fidelity, one can define the fidelity
susceptibility:

χ(g) = − 1

N

∂2 logF (|ψ(g)〉 , |ψ(g + h)〉)
∂h2

∣∣∣∣
h=0

, (23)

where N is the number of degrees of freedom of the sys-
tem, which diverges at the critical points of quantum
phase transition in the thermodynamic limit N → ∞.
We will see that this object is intrinsically geometric.

3.1 Relation to the Bures distance,
the Berry phase and the Bures metric

Let [ginitial, gfinal] 3 g 7→ |ψ(g)〉 ∈ H be a curve and
{|ψi〉 = |ψ(gi)〉 : i = 1, ...,M} be a discretization of the
curve. Then,
|| |ψi+1〉 − |ψi〉 ||2 = 2

(
1− Re〈ψi+1|ψi〉

)
≥ 2(1− F (|ψi+1〉 , |ψi〉)) ≡ d2Bures(|ψi+1〉 , |ψi〉), (24)

where || · || is the Hilbert space norm induced by the Her-
mitian inner product and dBures(·, ·) is the so-called Bures
distance. Choosing different representatives for the quan-
tum states |ψ̃i〉 = e iαi |ψi〉 does not change the fidelity
nor the Bures distance, i.e., they are gauge invariant. In
particular, we can choose them so that the inequality is
saturated for each i. When M →∞,

lim
M→∞

e iαM = exp
(
−
gfinal∫

ginitial

〈ψ(g)| d

dg
|ψ(g)〉 dg

)
, (25)

which is the Berry phase obtained by parallel transporta-
tion of |ψ(0)〉 along the curve of quantum states.

Additionally,
F (|ψi+1〉 , |ψi〉) = |〈ψi+1|ψi〉|

≈ 1− 1

2

∣∣∣∣∣∣∣∣ d |ψ(g)〉
dg

−〈ψ(g)| d

dg
|ψ(g)〉 |ψ(g)〉

∣∣∣∣∣∣∣∣2(gi+1−gi)2

≈ exp
(
− 1

2
|| d |ψ(g)〉

dg
− 〈ψ(g)| d

dg
|ψ(g)〉 |ψ(g)〉 ||2δg2

)
≡ exp

(
− 1

2
Nχ(g)δg2

)
. (26)

This last equation shows that fidelity susceptibility is the
pullback of the quantum metric by the map g 7→ P (g) =
|ψ(g)〉 〈ψ(g)|.

The susceptibility can also be written in terms of the
projector P (g) = |ψ(g)〉 〈ψ(g)| ≡ |ψ0(g)〉 〈ψ0(g)| and its
complement Q(g) =

∑
i6=0 |ψi(g)〉 〈ψi(g)|,

χ(g) =
1

N
Tr

(
P (g)

∂P (g)

∂g
Q(g)

∂P (g)

∂g

)
. (27)

If furthermore |ψ(g)〉 is the groundstate of a family of
Hamiltonians H(g), then we can write the fidelity sus-
ceptibility as a sum over excited states:

χ(g) =
1

N

∑
i 6=0

| 〈ψ0(g)| ∂H(g)
∂g |ψi(g)〉 |2

(E0(g)− Ei(g))2
, (28)

where the Ei(g)’s denote the energies associated to the
states |ψi(g)〉. The last sum over states indicates how the
gap closing points lead to divergences.

3.2 Fidelity, Bures distance and Uhlmann connection
The fidelity generalizes to mixed states ρ and ρ′

through the formula:

F (ρ, ρ′) = Tr
(√√

ρρ′
√
ρ
)
. (29)

Associated to it are the Bures distance, and its infinites-
imal version, the Bures metric, and the Uhlmann con-
nection. The Uhlmann connection generalizes the Berry
connection. For families of fixed rank projectors, it re-
duces to the non-Abelian Berry connection.

The geometric point of view here is that if we consider
the space of fixed rank k density matrices over H, con-
sidered to be finite dimensional, say H = Cn, there is a
principal U(k)-bundle whose fiber at ρ is the set of pu-
rifications of ρ. The later can be seen as the set of n× k
matrices W , such that

WW † = ρ. (30)
The right action of U(k), W 7→ W · U , with U ∈ U(k),
clearly preserves the fibre. The tangent bundle to the
space of all purifications of density matrices of fixed rank
k comes endowed with a Riemannian metric induced by
the Hilbert-Schmidt, or Frobenius inner product. This
allows us to define a horizontal distribution as before
and, hence, parallel transport along curves of density ma-
trices – the resulting connection is called the Uhlmann
connection.

To capture the non-triviality of the Uhlmann gauge
field, we can define the quantity

∆(ρ, ρ′) := F (ρ, ρ′)− Tr(
√
ρ
√
ρ′) =

Tr
(√√

ρρ′
√
ρ
)
− Tr(

√
ρ
√
ρ′). (31)

The reason for this is that for a curve of maximal rank
density operators, t 7→ ρ(t),

∆(ρ(t), ρ(t+ δt)) =

Tr
[
|
√
ρ(t+ δt)

√
ρ(t)|(I − V )

]
, (32)

with V = U(t+ δt)U†(t) and

U(t) = T exp

(
−

t∫
0

A(dρ/ds)ds

)
, (33)

being the Uhlmann parallel transport unitary operator,
in which A is the Uhlmann gauge field in the gauge pro-
vided by ρ 7→ √ρ (which is a global gauge for full rank
density operators).

4. Fidelity and Uhlmann connection
in free fermion systems

In our work, we applied the fidelity and ∆ analysis of
phase transitions on Boltzmann-Gibbs states
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Fig. 2. From the left to the right: F (ρ, ρ+ δMρ) as a function of T and M , ∆(ρ, ρ+ δMρ) as a function of T and M ,
F (ρ, ρ + δT ρ) as a function of T and M . δqρ denotes a variation of ρ with respect to q, q = M,T . Here δM = 10−2

and δT = 10−2. The plot for ∆ when deforming the state along T is omitted because ∆ is constant and equal to zero
everywhere. (Adapted from Ref. [15]).

ρ =
e−βH

Z
, (34)

where β = 1/T is the inverse temperature, Z is the par-
tition function and H is a free-fermion Hamiltonian. The
set of parameters is the coupling driving a quantum phase
transition (T = 0) and the temperature T . We numer-
ically evaluated F (ρ, ρ′) and ∆(ρ, ρ′) with ρ′ obtained
from ρ by a small deformation either on the coupling or
on the temperature (or both). We analysed paradigmatic
examples of topological insulators (the Creutz Ladder
and the Su-Schrieffer-Heeger (SSH) model) and super-
conductors (Kitaev Chain) in dimension D = 1 and also
the BCS theory of superconductivity. Here we will focus
on the Creutz Ladder and the BCS models. The results
for the SSH and the Kitaev model are qualitatively sim-
ilar to those of the Creutz Ladder model. Recently, we
have also generalized the results obtained for topological
phases of free fermions to D = 2, with a further analyti-
cal proof of the absence of phase transitions at T > 0 [17].
In particular, there we considered a Chern insulator and
a topological superconductor.

4.1 Creutz Ladder model

The Creutz Ladder Hamiltonian is
H = −

∑
i∈Z

[
K
(

e− iφa†i+1ai + e iφb†i+1bi
)

+K
(
b†i+1ai + a†i+1bi

)
+Ma†i bi

]
+ H.c., (35)

where K and M are hopping amplitudes, the phase e iφ

is associated to a discrete gauge field and the ai, bi’s are
fermion annihilation operators for two different species
at lattice sites specified by the Latin index i. For sim-
plicity, we take 2K = 1 and φ = π/2. Then, the sys-
tem is in a non-trivial topological phase for M < 1 and
trivial for M > 1. The phase of the system can be iden-
tified by going into momentum space where the Hamil-
tonian defines a map from the 1D Brillouin zone, topo-
logically a circle, to a great circle in the Bloch sphere.
The winding number of this map modulo two determines
the phase.

The results for the fidelity and ∆ analysis are presented
in Fig. 2. We see a clear change of the quantities in the
vicinity of the zero-temperature quantum phase transi-
tion point. Clearly, we see no temperature driven phase
transitions.

4.2 BCS theory of superconductivity

The BCS mean-field Hamiltonian is given by

H =
∑
k

(εk − µ)
[
(c†kck − c−kc

†
−k)

−∆kc
†
kc
†
−k −∆∗kc−kck

]
, (36)

where ck ≡ ck↑ and c−k ≡ c−k↓ are electron annihilation
operators, the sum is over the momenta k, εk is the spec-
trum, µ is the chemical potential and ∆k is the super-
conducting gap. The latter is determined through self-
consistent equations and depends on the lattice-mediated
pairing interaction denoted by V .

The results for the fidelity and ∆ analysis are presented
in Fig. 3.

To understand these results it is important to recall
some facts about density matrices. Consider the Hilbert
space Cn. Then, density matrices are represented by Her-
mitian matrices. The latter can be diagonalized,

ρ = SDS†, (37)
where S being a unitary matrix whose columns yield a
basis of eigenvectors of ρ. Arbitrary deformations of ρ
can be written as follows:

δρ = SδDS† + [(δS)S†, ρ]. (38)
If the second term vanishes, only the spectrum is chang-
ing. If the first term vanishes, only the eigenspaces are
changing.

In summary, fidelity captures phase transitions where
both kinds of changes occur. The quantity ∆ is cap-
turing only deformations in eigenspaces. In contrast to
BCS, no thermally driven phase transitions occurred in
the Creutz Ladder model. The zero temperature phase
transition features are washed out smoothly with temper-
ature. Although the original Hamiltonian for BCS is not
temperature dependent, the mean-field Hamiltonian is.
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Fig. 3. From the left to the right, first row : F (ρ, ρ + δV ρ) as a function of T and M , ∆(ρ, ρ + δV ρ) as a function of
T and M . From the left to the right, second row : F (ρ, ρ+ δT ρ) as a function of T and M , ∆(ρ, ρ+ δT ρ) as a function
of T and M . δqρ denotes a variation of ρ with respect to q, q = M,T . Here δT = 10−3 and δV = 10−3. We clearly
observe a temperature driven phase transition. (Adapted from Ref. [15]).

This shows that the origin of thermally driven phase tran-
sitions requires further investigation (see the Supplemen-
tal Material of Ref. [15]).

Previous studies [24] of the Uhlmann phase for the
Creutz Ladder model where the space of parameters,
i.e., the base space of the relevant bundle, was taken to
be momentum and temperature indicated that a phase
transition driven by temperature seemed to take place.
In the paradigmatic case of the integer quantum Hall
effect at T = 0, we have that the transverse conduc-
tivity is given by the first Chern number of the occu-
pied Bloch bundle. As a result, band topology appears
in the response to an external field. It is unclear that
the Uhlmann geometric phase along the one-dimensional
momentum space, as a function of T , has an interpre-
tation in terms of the response of the system. In con-
trast, the fidelity computed in our work, refers to the
change of the system’s overall state, with respect to its
parameters (including temperature). Moreover, we have
recently shown, by analysing the non-commutativity
of the thermodynamic and zero temperature limits,
that, in fact, there are no finite temperature phase
transitions [17].

5. Dynamical phase transitions:
fidelity and interferometric Loschmidt echoes

The real time evolution of closed quantum systems out
of equilibrium has some formal similarities with thermal
phase transitions. The non-analytic behaviour of certain
dynamical observables after a sudden quench in a pa-
rameter of the Hamiltonian is now known as a dynamical
phase transition. The analogy is made from the compar-
ison

Tre−βH ≡ e−Nf ←→ | 〈ψ| e− i tH |ψ〉 | ≡ e−Ng, (39)
where N is the number of degrees of freedom of the sys-
tem, f is the free energy and g is identified with the
dynamical free energy. The function g exhibits certain
non-analytic behaviour as a function of t. When the
quenched state becomes orthogonal to the initial state
g diverges – these are known as the Fisher zeroes.

5.1 Figure of merit: Loschmidt echo

Consider a smooth family of Hamiltonians
parametrized by a smooth manifoldM , {H(λ) : λ ∈M}.
Take λi, λf ∈ M . The Loschmidt echo at time t is the
quantity
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L = | 〈ψ(λi)| exp
(
− itH(λf )

)
|ψ(λi)〉 |, (40)

where |ψ(λ)〉 is the groundstate of H(λ) (assumed to be
generically non-degenerate). As done in perturbation
theory,

exp
(
− itH(λf )

)
=

exp
(
− itH(λi)

)
T exp

(
− i

t∫
0

dsV (s)
)
, (41)

with V (s) = e isH(λi)(H(λf ) − H(λi))e− isH(λi) being
the “perturbation” in the interaction picture provided by
H(λi). It is then clear that

L = | 〈ψ(λi)|T exp
(
− i

∫ t

0

dsV (s)
)
|ψ(λi)〉 |. (42)

To understand the relation with the quantum metric, we
take λi ≡ λ and λf = λ+ δλ. Then,

V = Va(λ)δλa + . . . , with Va(λ) =
∂H

∂λa
(λ), (43)

where λa are local coordinates on M in a neighbourhood
of λ. It is then a simple perturbation theory problem to
show

L = 1− 1

2
χab(λ; t)δλaδλb + · · · ≈

exp
(
− 1

2
χab(λ; t)δλaδλb

)
, (44)

with the dynamical susceptibility χab(λ; t) given by

χab(λ; t) =

t∫
0

t∫
0

ds2ds1
(
〈Va(s2)Vb(s1)〉

−〈Va(s2)〉〈Vb(s1)〉
)
, (45)

where 〈·〉 := 〈ψ(λ)| · |ψ(λ)〉.
Observe that L is nothing but the fidelity between the

states |ψ(λi)〉 and e− i tH(λf ) |ψ(λi)〉. Recall that the fi-
delity F is related to the Bures distance by d2B = 2(1−F ).
Hence, as we saw earlier, the quantum metric comes
from the second order variation of the fidelity. There-
fore, if we consider the family of maps Φt : λ′ 7→
e− i tH(λ′) |ψ(λ)〉 〈ψ(λ)| e i tH(λ′), take the pullback of the
quantum metric and evaluate it at λ′ = λ, we obtain the
dynamical susceptibility χab(λ; t).

5.2 Generalizations: finite temperature

One natural generalization is to take the fidelity be-
tween the states ρ = e−βH(λi)/Z and the quenched
state ρ′ = e− i tH(λf )

(
e−βH(λi)/Z

)
e i tH(λf ) — the Fi-

delity Loschmidt Echo. The associated susceptibility is
then the pullback of the Bures metric in the space of
full-rank density matrices by the map

Φ(t,β) : λ′ 7→ e− i tH(λ′)
(

e−βH(λ)/Z
)

e− i tH(λ′), (46)

evaluated at λ′ = λ.
Another possible generalization is constructed as fol-

lows. Recall the form of Eq. (45). If we replace the
average on |ψ(λ)〉 by the average on e−βH(λ)/Z, the ap-
propriate generalization is

L =

∣∣∣∣∣Tr
{

e−βH(λi) e i tH(λi) e− i tH(λf )
}

Z

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
Tr

{
e−βH(λi)T exp(− i

t∫
0

dsV (s))

}
Z

∣∣∣∣∣∣∣∣∣ . (47)

We call it the Interferometric Loschmidt Echo. The as-
sociated susceptibility can also be seen as a pullback
of a metric, but not in the space of states. Instead,
it is the pullback of a metric in the space of unitary
processes, namely, one induced by the thermal state
ρ(λ) = exp(−βH(λ))/Z. This can be seen as a direct
consequence of the following proposition: Let A and B
be linear operators in the Hilbert space and a full rank
density matrix ρ, then
〈A,B〉ρ ≡ Tr

(
ρA†B

)
(48)

defines a Hermitian inner product. This induces a Rie-
mannian metric in the space of unitary maps. The
map by which we pullback to obtain the susceptibility
is simply Φt : λ 7→ exp(− itH(λ)). The interferomet-
ric Loschmidt echo has an interpretation in terms of an
experiment. Consider the Mach-Zender interferometric
experiment of Fig. 4.

Fig. 4. Interferometric experiment associated to the
interferometric Loschmidt echo.

The output in detector D0 is obtained by measur-
ing with respect to Id ⊗ |0〉 〈0|, where the first factor
space corresponds to the many-body state, and the sec-
ond to the spatial degree of the system (the arms “0”
and “1” of the interferometer), after acting on the input
state with

BS2 ◦ PS ◦ BS1 =

1√
2

(
Id Id
Id −Id

)(
Id 0

0 U

)
1√
2

(
Id Id
Id −Id

)
, (49)

where BS and PS stand for beam splitter and phase shift,
respectively. The resulting sequence is
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ρ⊗ |0〉 〈0| BS1−→ 1

2
ρ⊗ (|0〉 〈0|+ |1〉 〈1|+ |0〉 〈1|+ |1〉 〈0|)

PS−→ 1

2

(
ρ⊗ |0〉 〈0|+ UρU† ⊗ |1〉 〈1|+ ρU† ⊗ |0〉 〈1|

+Uρ⊗ |1〉 〈0|
)

BS2−→ 1

4
(ρ+ UρU† + ρU† + Uρ)⊗ |0〉 〈0|+ ... (50)

So, the output probability on D0 is
1

2
(1 + ReTr {ρU}) . (51)

The second term has the same form as the interferomet-
ric Loschmidt echo, i.e., the trace of a density operator
multiplied by a unitary operator.

5.3 Results for two-band systems

Take H(λ) = x(λ) · σ and with respect to a sphere of
constant energy, i.e., E = |x| = constant, write

∂x

∂λa
= ta + na, (52)

where the first term is tangent and the second is normal
to the sphere. We then have that the dynamical fidelity
susceptibility is given by

χab = tanh2(βE)

(
sin(Et)

E

)2

ta · tb, (53)

while the interferometric Loschmidt echo susceptibility is
given by

χab =

(
sin(Et)

E

)2

ta · tb

+t2(1− tanh2(βE))na · nb. (54)

Looking at the above formulae, we can conclude that
for the fidelity Loschmidt echo, the dynamical suscepti-
bility has no normal components. This is a direct conse-
quence of the fact that the quenched density matrix has
the same eigenvalues as the original one. For the case
of the interferometric Loschmidt echo, the susceptibility
has all types of components – the unitary process sees all
the changes in H.

Intuitively, the interferometric Loschmidt echo is more
sensitive than the Fidelity Loschmidt echo since it is as-
sociated with the details of the processes that lead to
the final state, rather than the states themselves. How-
ever, the measurement of the former requires preparing
Shrödinger cat-like states, which can be very challenging
for many-body systems. The fidelity between two states
corresponds to the classical fidelity after performing an
optimal measurement on the two states.

The above formulae for the two-band case show that
the fidelity susceptibility smears out with temperature,
while the interferometric one does not, see Fig. 5. More-
over, in both cases, the shape function sin2(Et)/E2 is
capturing the Fisher zeroes at critical times t = (2n +
1)π/E. We remark that the difference between the two
gives a relation to thermal equilibrium:

(1− tanh2(βE))×

[(
sin(Et)

E

)2

ta · tb + t2na · nb

]
,

(55)
since the overall factor (1−tanh2(βE)) is the equilibrium
susceptibility.

Fig. 5. Modulating function for the fidelity susceptibil-
ity. The gap closing points become less important with
the increase of temperature. (Adapted from Ref. [18]).

6. Conclusions

In this work, we have presented a short overview of the
information geometry approach to phase transitions. In
particular, in the context of systems of free fermions at
finite temperature, which are known exhibit topological
phase transitions at zero temperatures, the BCS theory
of superconductivity, and also in the context of dynam-
ical phase transitions. We have seen, in all cases, that
the topological features are gradually smeared out with
temperature.

It is a remarkable fact that geometric quantities, such
as the Bures metric, and the Berry and Uhlmann connec-
tions, are all linked to the quantum information concept
of fidelity. The latter is able to capture all kinds of de-
formations of the state of the system. Ultimately, the
intricate geometry and gauge theory arising in quantum
mechanics is naturally associated to state distinguisha-
bility, which is captured by the fidelity.
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