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This paper concerned with the study of the effect of thermo-elastic damping on transverse waves propagating
in a single-wall carbon nanotube. The Q-factor for thermo-elastic damping is investigated for transverse wave
propagating in the nanotube. As a physical model, cylindrical shell is considered and the Donnell–Mushtari–
Vlasov approach is applied. The influences of the room temperature and radial thickness of the nanotube on the
vibration behaviors are discussed. The effects of the room temperature and radial thickness of the nanotube on the
quality factor are examined numerically. It can be shown that the Q-factor is proportional to the radial thickness of
the nanotube. On the other hand, the opposite trend is appeared with the change of room temperature. It means
that the Q-factor for a single-wall carbon nanotube decreases with the increase of the room temperatures.
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1. Introduction

The discovery of carbon nanotubes (CNTs) has stim-
ulated extensive research activities in science and en-
gineering devoted to carbon nanostructures and nano
composites. Many studies have shown that the carbon
nanotubes possess remarkable mechanical and physical
properties [1, 2] leading to many potential applications
such as fluid transport, fluid storage at nano scale, and
nano devices for drug delivery [3]. In addition to exper-
imental endeavors, CNT modeling is classified into two
main categories. The first is atomic modeling, which in-
cludes such techniques as classical molecular dynamics
(MD) and tight-binding MD and the density functional
model [4, 5]. Li and Chou [6] reported an atomistic sim-
ulation of single-walled carbon nanotube (SWCNT) sub-
jected to harmonic waves. Atomic modeling is limited to
systems with a small number of molecules and atoms and
is therefore confined to small-scale modeling. The second
category is continuum modeling [7, 8], which includes
classical (or local) beam and shell theories that are prac-
tical for analyzing CNTs for large-scale systems. Suc-
cessful work has been conducted with continuum mod-
eling, such as buckling analysis, dynamics studies, and
mechanical property investigations of CNTs [9, 10]. In
various dissipation mechanisms, thermo-elastic damping
has been identified as a dominant source of intrinsic dis-
sipations in MEMS/NEMS oscillators [11]. Zener [12]
has explored the results of thermo-elastic damping from
the irreversible flow of heat driven by local tempera-
ture gradients that through the coupling accompany the
strain field. Since the early work by Zener, quite a few
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studies relating to thermo-elastic vibration analysis for
rod, beam, plate, and composite laminate structures have
been reported [13–17].

Although the thermo-elastic damping in structures is
not a new topic, the problems have been re-attracted
increasing attentions more recently as the rapid devel-
opment of micro- and nano-technology. However, only
a limited portion of the literature is concerned with the
vibration and buckling analysis of carbon nanotubes con-
sidering the thermal effects [18–20]. Zhang et al. [21]
studied the thermal effect on the vibration of double-
walled carbon nanotubes using thermal elasticity. Wang
et al. [22] studied the thermal effects on the vibration and
instability of conveying fluid CNTs based on thermal elas-
ticity mechanics. Hsu et al. [23] analyzed the frequency
of chiral SWCNT subjected to thermal vibration and us-
ing Timoshenko beam model. Ni et al. [24] conducted
an analysis of buckling behavior of single-walled CNTs
subjected to axial compression under a thermal environ-
ment. Based on thermal elasticity mechanics, Zhang et
al. [25] developed elastic multiple column model for col-
umn buckling of MWNTs with large aspect ratios un-
der axial compression coupling with temperature change.
They concluded that at low or room temperature the
buckling strain including thermal effect is larger than
that excluding the thermal effect and increases with the
increase of temperature change. Alibeigloo et al. [26] in-
vestigated thermo-elastic analysis of functionally graded
carbon nanotube-reinforced composite plate using theory
of elasticity. Hoseinzadeh et al. [27, 28] have been stud-
ied the thermo-elastic vibration and damping analysis of
double-walled carbon nanotubes based on shell theory.

In this paper, we derive an analytical expression for the
natural frequency and the quality factor of the transverse
waves propagating in a single-wall carbon nanotube due
to thermo-elastic damping. The influences of the room
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temperature and radial thickness of the nanotube on the
vibration behaviors are discussed. The effects of the room
temperature and radial thickness of the nanotube on the
Q-factor are examined numerically and the results are
shown graphically.

2. Formulation of the problem

Assuming small strains and displacements, and con-
sidering the thin shell theory, Fig. 1 illustrates the cylin-
drical coordinate system (x, θ, z) and the geometry of the
model. In the figure, x, θ and z-axis are longitudinal, cir-
cumferential and transverse directions, respectively. Fur-
thermore, the dimensions of the model are presented in
terms of the mean radius R, radial thickness h and the
mass density ρ.

Fig. 1. Geometry of the tube with coordinate system .

The thermo-elastic linear equations of the cylindri-
cal shell in ux, uθ and uz displacements can be written
as [29]:

∂(Nx −NT )

∂x
+

1

R

∂Nxθ
∂θ

= ρh
∂2ux
∂t2

, (1)

∂Nxθ
∂x

+
1

R

∂(Nθ −NT )

∂θ
+

1

R

∂Mxθ

∂x

+
1

R2

∂(Mθ −MT )

∂θ
= ρh

∂2uθ
∂t2

, (2)

∂2(Mθ −MT )

∂x2
+

2

R

∂2Mxθ

∂x∂θ
+

1

R2

∂2(Mθ −MT )

∂θ2

−Nθ −NT
R

= ρh
∂2uz
∂t2

, (3)

And the strain–displacements relations are written as:
εx = ε0x + zκx, εθ = ε0θ + zκθ,

εxθ = ε0xθ + zκxθ, (4)
where εz, εθ and εx are the transverse, circumferential
and longitudinal components of strains, respectively.

ε0x =
∂ux
∂x

, ε0θ =
1

R

(
∂uθ
∂θ

+ uz

)
,

ε0xθ =
∂uθ
∂x

+
1

R

∂ux
∂θ

, (5)

and

κx = −∂
2uz
∂x2

, κθ =
1

R2

(
∂uθ
∂θ
− ∂2uz

∂θ2

)
,

κxθ =
1

R

(
∂uθ
∂x
− 2

∂2uz
∂x∂θ

)
, (6)

are the curvatures. Furthermore, the membrane forces
and bending moments are defined as

Nx = ∆
(
ε0x + Ωε0θ

)
, Nθ = ∆

(
ε0θ + Ωε0x

)
,

Nxθ =
∆(1− Ω)ε0xθ

2
, (7)

Mx = D (κx + Ωκθ) , Mθ = D (κθ + Ωκx) ,

Mxθ =
D(1− Ω)

2
κxθ, (8)

where ∆ = Eh/1 − Ω2) is the membrane stiffness,
D = Eh3/[12(1 − Ω2)] is the bending stiffness, Ω is the
Poisson ratio and E is the elasticity constant. Also, mem-
brane force NT and bending momentMT due to thermal
effect can be expressed as

NT =
Eαt

1− Ω

h/2∫
−h/2

(T − T0)dz,

MT =
Eαt

1− Ω

h/2∫
−h/2

(T − T0)zdz, (9)

where αt is the coefficient of thermal expansion.

The temperature distribution for thermal flow coupled
with strain can be obtained from the heat conduction
equation as [30]:

χ∇̂2T = ρCp
∂T

∂t
+

EαtT

(1− 2Ω)

∂e

∂t
, (10)

where χ is the thermal conductivity, Cp is the heat
capacity coefficient at constant pressure, and e is the di-
latation strain due to the thermal effect, which define as

e = εx + εθ + εz (11)
For cylindrical thin shell problems, the normal stress,
σz, along the thickness direction is neglected. The
stress–strain relationships with thermal effects thus can
be written as

εx =
1

E
(σx − Ωσθ) + αt(T − T0),

εθ =
1

E
(σθ − Ωσx) + αt(T − T0),

εz = −Ω

E
(σθ + σx) + αt(T − T0), (12)

Solving the above equation for εz in terms of εx and εθ,
we obtain
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εz =
1

1− Ω
[−Ω(εx + εθ) + (1 + Ω)αt(T − T0)] . (13)

Based on well-known Donnell–Mushtari–Vlasov
(DMV) approach [31], the governing equations can
be simplified for transverse displacement-dominated
vibrations. Then, the terms involving the in-plane
displacements (ux, uθ) are neglected only in the bending
strains based on this method. Thus, Eq. (6) and the
first two equations in Eq. (1) in can be rewritten as

κx = −∂
2uz
∂x2

, κθ = − 1

R2

(
∂2uz
∂θ2

)
,

κxθ = − 2

R

(
∂2uz
∂x∂θ

)
, (14)

With relations (7) and (14) and considering the
geometric condition of the transverse wave propagating
in single-walled carbon nanotubes as [32]:

∂

∂θ
= 0, ux = −z ∂uz

∂x
(15)

The thermo-elastic linear equation of motion gov-
erning the transverse deflection of the single-walled
nanotube becomes [33]:

D
∂4uz
∂x4

+
∂2MT

∂x2
+
∂2uz
∂x2

NT + ρh
∂2uz
∂t2

= 0. (16)

Assuming small strains and negligible in-plane dis-
placements, the strains are related to uz as [27]

εx = −z ∂
2uz
∂x2

, εθ = −z ∂
2uz
∂z2

. (17)

Substituting Eqs. (13) and (17) into Eq. (11), we
obtain

e = −
(

1− 2Ω

1− Ω

)
z∇2uz +

1 + Ω

1− Ω
αt(T − T0) (18)

In most applications, T on the second term of the right-
hand side of Eq. (10) can be replaced by T0 to yield a
linear equation for the temperature [28]. Therefore, the
heat Eq. (10) can be rewritten as

χ∇̂2T =

(
ρCp +

Eα2
tT0(1 + Ω)

(1− Ω)(1− 2Ω)

)
∂T

∂t

− EαtT0
(1− Ω)

∂

∂t

(
z∇2uz

)
. (19)

Typically, ρCp � Eα2
tT0(1+Ω)

(1−Ω)(1−2Ω) [33]. Hence, Eq. (19)
reduces to

χ∇̂2T = ρCp
∂T

∂t
− EαtT0

(1− Ω)

∂

∂t

(
z∇2uz

)
. (20)

The thermal gradient ∇̂2T for cylindrical shell is

∇̂2T =
1

R+ z

∂T

∂z
+
∂2T

∂z2
+

1

(R+ z)2
∂2T

∂θ2
+
∂2T

∂x2
(21)

Further, Eq. (21) can be reduced by considering the
first terms on right-hand side only because thermal
gradients in the thickness direction z are much larger
than the other directions [34].

χ
∂2T

∂z2
= ρCp

∂T

∂t
− EαtT0

(1− Ω)

∂

∂t

(
z∇2uz

)
. (22)

Equations (16) and (22) are the simplified thermo-
elastic equation under transverse deflection-dominated
vibrations, and can be used for the analysis of thermo-
elastic damping of transverse waves propagating in the
single-wall carbon nanotube.

3. Harmonic solution of transverse waves
For propagation of transverse waves in any arbitrary

direction, the solution of Eqs. (16) and (22) can be ex-
pressed as:

uz(x, z, t) = ψ(x, z)e iωt,

T (x, θ, z, t)− T0 = Θ(x, θ, z)e iωt, (23)
where ω is the circular frequency and i =

√
−1.

Substituting Eqs. (23) into Eqs. (16) and (22), and
noting that the temperature variation across the nano-
tube thickness is much larger than its variation across
the plane of the nanotube, we obtain

D

(
∂4ψ

∂x4

)
+

Eαt
(1− Ω)

h/2∫
−h/2

z
∂2Θ

∂x2
dz

+
Eαt

(1− Ω)

∂2ψ

∂x2

h/2∫
−h/2

Θ dz = ρhω2ψ, (24)

∂2Θ

∂z2
− λ2Θ = − iEαtT0ω

χ(1− Ω)
z
∂2ψ

∂x2
, (25)

where λ =
√

iωρCp

χ .
The heat flux between the surfaces and surroundings

of the nanotube is sufficiently small; so, zero heat flux
conditions can be applied.

∂Θ

∂z
= 0 at z = ±h

2
(26)

Finally, the temperature profile coupled with the dis-
placement and stress function can be obtained as

Θ =
EαtT0

ρCp(1− Ω)

∂2ψ

∂x2

(
z − sin(Π z)

Π cos
(
Πh
2

)) , (27)

where Π = (1− i)
√

ωρCp

2χ .

Substituting Eq. (27) into Eq. (24) and carrying out
the integrations and retaining the linear terms, we ob-
tain[

D +
E2α2

tT0
ρCp(1− Ω)2

(
h3

12
+

h

Π 2
− 2 tan(Πh/2)

Π 3

)]
×∂

4ψ

∂x4
= ρhω2ψ. (28)

Then, appropriate assumed mode shapes are chosen in or-
der to obtain the natural frequency under thermo-elastic
damping. For vibration of single-walled carbon nano-
tubes with two ends simply-supported, the solution has
the form:
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ψ(x, z) = ζ sin
(mπx

L

)
cos(nz), (29)

where ζ is the real number denotes the radial displace-
ment amplitude, m is the axial half wave number, and n
is the circumferential wave number.

Substituting Eq. (29) into Eq. (28), we obtain

ω2 =
(mπx

L

)4
(30)

×
[
D +

E2α2
tT0

ρCp(1− Ω)2

(
h3

12
+

h

Π 2
− 2 tan(Πh/2)

Π 3

)]
.

Lastly, analytical expression of the quality factor (Q-
factor) of the single–wall carbon nanotube in this case
take the form:

Q =

∣∣∣∣ D

2Imδ(ω)

∣∣∣∣ , (31)

where δ(ω) =
E2α2

tT0

ρCp(1−Ω)2

(
h3

12 + h
Π 2 − 2 tan(Πh/2)

Π 3

)
.

4. Numerical results

In this section, verification of this work is presented by
considering the effect of thermo-elastic damping on trans-
verse waves propagating in single-wall carbon nanotube
(SWCN) with an, which has been analytically examined
by applying heat conduction equation of the shell. Me-
chanical and thermal properties are listed below.

The material constants are the Young modulus E =
1060 GPa, the mass density ρ = 2270 kg m−3, the
Poisson ratio Ω = 0.25, heat capacity coefficient
ρCp = 1.36 × 106Jm3K−1, thermal expansion coeffi-
cient αt = 7 × 10−6 K−1, thermal conductivity χ =
2000 Js−1m−1K−1 [40].

Fig. 2. Variation of the Q-factor with the radial thick-
ness (h) of SWCN for the transverse wave propagation.

At first, the effect of the temperature changes and
radial thickness of a single–walled carbon nanotube on
the Q-factor is investigated. Secondly, the variation of
thermo-elastic damping with T0 and h are plotted in
Figs. 2 and 3. The Variations of the Q-factor with the
radial thickness (h) of SWCN are shown in Fig. 2. Mean-
while, the results for thermo-elastic damping with differ-

Fig. 3. Variation of the Q-factor with the temperature
T0 for the transverse waves propagation.

ent temperature changes (T = 50 K to 400 K) are shown
in Fig. 3. In the Fig. 2, the Q-factor of the nanotube
is shown to be proportional to the radial thickness of
SWCN.

It is can see that, the quality factor of the nanotube
increases as the radial thickness increases. On the other
hand, Fig. 3 displays the opposite trend. The quality fac-
tor decreases as the room temperature increases. These
results can be helpful in the design of resonators.

5. Conclusion

In this research paper, the quality factor for thermo-
elastic damping is investigated for transverse wave prop-
agating in a single wall carbon nanotube (SWCN). As
a physical model, cylindrical shell is considered. In or-
der to simplify the equations of motion, DMV approach
is applied. By introducing the stress function, the com-
patibility and heat conduction equations can be solved
with reference to a simplified equation of motion. The
Q-factor are determined analytically. The influences of
the room or low temperature and radial thickness of the
nanotube on the vibration behaviors are discussed, re-
spectively. Then, the effects of the room temperature
and radial thickness of the nanotube on the Q-factor are
closely examined numerically. It can be shown that the
Q-factor is proportional to the radial thickness of the
nanotube. On the other hand, the increase of the radial
thickness of the nanotube leads to an increase in thermo-
elastic damping. It can be also seen that the Q-factor for
a SWCN decreases with the increase of the room tem-
peratures.
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