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Two-dimensional mixed-metal complexes composed of ruthenium(II,III) carboxylate (Ru2(RCOO)+4 ) and
tetracyanidopalladate(II) (Pd(CN)2−4 ) units, [{Ru2(RCOO)4}2Pd(CN)4] (R = CH3 (1), C2H5 (2), t − C4H9

(3)), were synthesized and characterized by elemental analysis, infrared and UV-vis-NIR spectra. Temperature-
dependence of magnetic susceptibility (2–300 K) of (2) showed that a weak antiferromagnetic interaction through
the Pd(CN)2−4 unit between the Ru2(C2H5COO)+4 units with zJ (the exchange integral multiplied by the number
of interacting neighbors) = –0.1 cm−1 and D (zero-field splitting parameter) = 75 cm−1. The N2-adsorption
isotherm measurement for (2) showed an adsorption property of Type II with an SBET value of 30.7 m2g−1.

DOI: 10.12693/APhysPolA.135.837
PACS/topics: magnetic property, antiferromagnetic interaction, dinuclear ruthenium carboxylate, cyanidometalate,
adsorption property

1. Introduction

Dinuclear metal carboxylates with a lantern-like or
paddle-wheel-like dinuclear core have attracted much at-
tention because of their unique dinuclear core and po-
tential application such as molecule-based magnetic ma-
terials, porous materials, and mesogenic materials [1–4].
Among these compounds, mixed-valent dinuclear ruthe-
nium(II,III) carboxylates, [Ru2(RCOO)4]

+, are unique
metal-metal bonded systems and can be used as a spin-
source within the metal-metal bond for construction of
magnetic materials [3–17]. In order to construct mag-
netic materials, linking ligand is an important factor
determining dimensionality of metal-assembled systems.
In this context, cyanidometalate complexes are useful
linking ligands and some of them are directed for dinu-
clear ruthenum carboxylates [18–29]. We found ferrimag-
netic behaviors in mixed-metal systems with hexacyanid-
oferrate(III) Fe(CN)3−6 [18] and octacyanidotungstate(V)
W(CN)3−8 [23, 24]. On the other hand, weak antiferro-
magnetic interaction was observed in mixed-metal com-
plexes with dicyanidoargentate(I) Ag(CN)−2 [25], tetra-
cyanidonickelate(II) Ni(CN)2−4 [26, 29], tetracyanido-
platinate(II) Pt(CN)2−4 [27, 28], and hexacyanidocobal-
tate(III) Co(CN)3−6 [18]. It should be noticeable that
the mixed-metal complex with tetracyanidoplatinate(II),
[{Ru2(CH3COO)4}2Pt(CN)4], has a two-dimensional
structure by assembling of dinuclear ruthenium(II,III)
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and tetracyanidoplatinate(II) units, forming a porous
structure with adsorbing property for nitrogen gas [28].
This encouraged us to study mixed metal complexes
of ruthenium(II,III) carboxylates with tetracyanidopal-
ladate(II) as shown in Fig. 1, because such system will
give a similar two-dimensional structure. In this study,
we will report on this system.

Fig. 1. Chemical structure of the mixed-metal system
of [Ru2(RCOO)4]

+ and [Pd(CN)4]
2−.

2. Experimental procedure

2.1. Materials

Tetrafluoroborate of dinuclear ruthenium(II,III) car-
boxylates were prepared by a method described in the
literature [11, 17]. All of other reagents were commer-
cially available and used as received.
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2.2. Synthesis of [{Ru2(RCOO)4}2Pd(CN)4]n

[{Ru2(CH3COO)4}2Pd(CN)4]n (1): To an aqueous
solution (5 mL) of K2[Pd(CN)4] · 3H2O (24.0 mg,
0.0607 mmol), an aqueous solution (5 mL) of
[Ru2(CH3COO)4(H2O)2]BF4 (108.3 mg, 0.193 mmol)
was added. The reaction mixture was stirred overnight,
the resulting yellowish-brown precipitate was filtered off,
washed with water and dried in vacuo. Yield, 100.5 mg
(93%). Anal. Found: C, 22.39; H, 2.57; N, 4.87%. Calc.
for C20H24N4O16PdRu4: C, 22.10; H, 2.23; N, 5.15%.
IR (KBr, cm−1): 2142 (νCN), 1462 (νasCOO), 1421
(νsCOO). Diffused reflectance spectra: λmax 250, 445,
and 1052 (br) nm.
[{Ru2(C2H5COO)4}2Pd(CN)4]n (2): This compound

was obtained as brown precipitate by the reaction of
[Ru2(C2H5COO)4(H2O)2]BF4 (104.3 mg: 0.169 mmol)
and K2[Pd(CN)4] · 3H2O (24.6 mg, 0.0852 mmol) using
the same method as that of 1. Yield, 74.8 mg (72%).
Anal. Found: C, 27.76; H, 2.95; N, 4.94%. Calc.
for C28H40N4O16PdRu4: C, 28.04; H, 3.36; N, 4.67%.
IR (KBr, cm−1): 2148 (νCN), 1447 (νasCOO), 1426
(νsCOO). Diffused reflectance spectra: λmax 258, 445,
and 1047 (br) nm.

[{Ru2(t − C4H9COO)4}2Pd(CN)4]n (3): This com-
pound was obtained as brown precipitate by the re-
action of [Ru2(t − C4H9COO)4(H2O)2]BF4 (106.8 mg,
0.1464 mmol) and K2[Pd(CN)4] · 3H2O (25.6 mg,
0.0887 mmol) using the same method as that of 1. Yield,
60.9 mg (49%). Anal. Found: C, 37.26; H, 5.51; N,
3.71%. Calc. for C44H72N4O16PdRu4: C, 37.12; H, 5.10;
N, 3.94%. IR (KBr, cm−1): 2142 (νCN), 1449 (νasCOO),
1421 (νsCOO). Diffused reflectance spectra: λmax 254,
446, and 1060 (br) nm.

2.3. Characterization

Elemental analyses were performed on a Thermo Finni-
gan FLASH EA1112 analyzer. Infrared spectra were
recorded on a JASCO MFT-2000 spectrometer as a KBr
pellet. Solid-state UV-Vis-NIR spectra were recorded in
the range of 200–1500 nm on a Shimadzu UV-3100 spec-
trophotometer (reflection method). Temperature depen-
dence of magnetic susceptibility was measured using a
Quantum Design MPMS XL SQUID magnetometer. The
data were corrected for diamagnetism of the constituent
atoms using the Pascal constants [30]. Adsorption mea-
surements for N2 were performed by a MicrotracBEL
BELSORP-mini II. Prior to the adsorption, the sample
was evacuated at 298 K for 2 h.

3. Results and discussion

Elemental analysis data of the isolated complexes are
in accordance with the 2:1 (Ru2(RCOO)4 : Pd(CN)4)
formulation [{Ru2(RCOO)4}2Pd(CN)4] (R = CH3 (1),
C2H5 (2), and t-C4H9 (3)). As shown in Fig. 2,
IR data showed a strong ν(CN) stretching band of
Pd(CN)2−4 moiety at 2142–2148 cm−1 and this band ap-
peared with a higher energy shift compared with that

of K2Pd(CN)4 · 3H2O (2128 cm−1) similarly to the
[{Ru2(CH3COO)4}2Pt(CN)4] complex which has a two-
dimensional polymer structure [28], suggesting the co-
ordination of the CN groups to the dinuclear ruthe-
nium units to form a two-dimensional sheet. The
νas(COO) and νs(COO) stretching bands appeared at
1447–1462 and 1421–1426 cm−1, respectively, with the
energy difference characteristic of syn-syn bridging car-
boxylate [12, 15, 31], suggesting the dinuclear unit is pre-
served upon the coordination of the tetracyanidopalla-
date(II) unit to form a two-dimensional sheet like the
[{Ru2(CH3COO)4}2Pt(CN)4] complex [28]. The two-
dimensional sheet structure was confirmed by the X-ray
crystallography for the [{Ru2(C2H5COO)4}2Pd(CN)4]
complex [32].

As shown in Fig. 3, the diffuse reflectance spectra of
1, 2, and 3 showed a broad band at 1047–1060 nm in
the near-infrared region. The band can be assigned to
the δ(Ru2)→ δ∗(Ru2) transition band and showed a red
shift compared with that of [Ru2(RCOO)4(H2O)2]BF4

(∼ 990 nm), suggesting the axial coordination of the
cyanido group of Pd(CN)2−4 unit [3, 5, 25]. The spec-
tra also contain a distinctive band at around 445 nm,
which can be assigned as π(Ru−O,Ru2) → π∗(Ru2)
transition [3, 5, 25].

Fig. 2. Infrared spectra of (1), (2), (3), and
K2Pd(CN)4 · 3H2O.

Fig. 3. Diffused reflectance spectra of (1), (2), and (3).
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Magnetic susceptibility measurement was made for
(2) in the temperature range of 2–300 K. The magnetic
data of (2) are shown in Fig. 4 in the form of µM

plot, where µM is the molar magnetic moment per
{Ru2(RCOO)4}{Pd(CN)4}1/2 unit. The magnetic
moment µM at 300 K is 4.48 µB, a little higher than
the effective magnetic moment of 3.87 µB, which is
expected for a magnetically isolated dinuclear RuII, III

2

S = 3/2 ion and one half of PdIIS = 0 ion. Like
the other dinuclear RuII, III

2 polymer complexes with
diamagnetic cyanidometallate (S = 0) [18, 25–29],
the magnetic moment is decreased with lowering the
temperature due to the zero-field splitting (D), followed
by further decrease in the magnetic moment closing to
2 K due to the antiferromagnetic interaction through
the tetracyanidopalladate(II) ligand. The magnetic
behaviors can be explained by using the equations
(1)–(4) for the S = 3/2 system with a zero-field
splitting of RuII,III

2 core, the inter-dinuclear-units in-
teraction being taken into account by the mean-field
approximation [5]:

χ′ =
χ

1− 2zJχ
Ng2µ2

B

(1)

where zJ is the exchange energy multiplied by the num-
ber (z) of interacting neighbors, and χ is the magnetic
susceptibility,

χ =
χ‖ + 2χ⊥

3
(2)

where χ‖ and χ⊥ are magnetic susceptibility terms
defined as follows:

χ‖ =
Ng2µ2

B

kT
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4

[
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Fig. 4. Temperature dependence of magnetic moment
of (2). The solid line was drawn by the calculated values
with the parameters described in the text.

The best-fitting process gave the parameters with g =
2.3, D = 75 cm−1, zJ = −0.1 cm−1 for (2), confirming
a weak antiferromagnetic interaction through the tetra-
cyanidopalladate(II) group between the 3/2 spins of din-
uclear ruthenium(II,III) cores.

Fig. 5. The adsorption isotherm of N2 at 77 K for (2).

We measured the adsorption property of (2) for N2 to
see the possibility of any porous structure. The adsorp-
tion isotherm of N2 at 77 K showed that the complex has
an adsorption property with Type II behavior having an
SBET value of 30.7 m2g−1, meaning that no micropore
exists in (2) (Fig. 5). The present result suggests that a
two-dimensional sheet may be constituted with a smaller
size of void in (2). This is in accordance with the crystal
structure of (2) [32].

4. Conclusion

New mixed-metal complexes with the formulation of
[{Ru2(RCOO)4}2Pd(CN)4] (R = CH3 (1), C2H5 (2),
and t−C4H9 (3)) were synthesized by introducing tetra-
cyanidopalladate(II) ion for ruthenium(II,III) acetate,
propionate, and pivalate. The elemental analysis, IR, and
UV-vis-NIR spectra supported the alternating arrange-
ment of the Ru2(RCOO)4 and Pd(CN)4 units to form a
two-dimensional sheet. The propionate complex showed
a weak antiferromagnetic interaction between the 3/2
spins of the Ru2(C2H5COO)4 units through the tetra-
cyanidopalladate(II) ligand within the two-dimensional
sheet. The N2-adsorption measurement suggested a
smaller size of void in the two-dimensional sheet com-
pared with that of the Ru2-Pt complex [28]. The ob-
tained results here are important to consider porous mag-
netic materials of mixed-metal systems.
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