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New equations for heat capacities, entropies, and enthalpies were applied to the experimental constant volume
heat capacity data of diamond. The temperature ΘV corresponding to 3R/2 was found to be 468 K. The relation-
ships between dimension, and ΘV and the Debye temperature were given. Diamond showed the dimensionality
crossover from 3 to 2 at after 300 K. Temperature dependences of the Debye temperature and ΘV were given and
non-monotonic behaviors were discussed. The heat capacity and entropy values predicted by the proposed models
were compared with the values predicted by the Debye models. The results showed that the proposed models fit
the data better than the Debye models. The enthalpy values predicted by the proposed models were compared
with the values predicted by the polynomial model and good agreement was obtained.
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1. Introduction

Einstein’s single oscillator and Nernst–Lindemann’s
two oscillator models have used the discrete oscillation
frequencies, and these models could not describe well the
heat capacities in the low temperature region [1–6]. The
Debye model considers that atomic system as a three-
dimensional, elastic, isotropic continuum and the heat
capacity equation is given by [3–5, 7, 8] :

CV = 9R

(
T

ΘD(T )

)3
xD∫
0

x4 ex

(ex − 1)
2 dx, (1)

where ΘD is the Debye temperature, x = ΘD(T )/T and
R is the gas constant.

The entropy equation in the Debye model is given
by [3, 4, 7]:

S = 3R

 4

x3D

xD∫
0

x3dx

(ex − 1)
− ln

(
1− e−xD

) (2)

The analytical solutions of integrals in Eqs. (1) and (2)
are not known. Therefore, at the intermediate temper-
atures, the values of heat capacities and entropies must
be obtained by numerical integration.

At very low temperatures, where T � ΘD, the follow-
ing equation is obtained from Eq. (1):

CV
∼=

12π4R

5

(
T

ΘD (T )

)3

(3)

Equation (3) is known as the Debye T 3-law and is as-
sumed to be valid from 0 K up to lattice temperatures of
order θD(0)/50, where ΘD(0) is the Debye temperature
at T → 0 K. ΘD depends on temperature. Therefore, it is
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often impossible to provide good fittings of Eq. (1) to the
given heat capacity data sets with a single Debye tem-
perature over the entire temperature range [4, 9]. These
non-Debye behaviors have been given in terms of CV /T

3

functions [10]. These curves show a non-monotonic be-
havior in the low temperature region which cannot be
explained with the Debye’s model.

The equation based on Taylor series expansion has
been proposed for the temperature interval ΘD(0)/50 ≤
T ≤ ΘD(0)/10 [4, 9]. Different models based on the
Thirring and exponential series expansions have also been
given for the intermediate to high temperature regions,
respectively [6]. However, these models are more com-
plex and seven or eight empirical parameters should be
determined.

The heat capacity equation at constant volume

CV = 3R
Tn

Tn +Θn
V (T )

, (4)

the heat capacity equation at constant pressure

CP = CPmax

Tn

Tn +Θn
p (T )

, (5)

the electronic heat capacity equation

Cel =
3

2
R

Tn

Tn + Tn
E(T )

, (6)

the electronic molar entropy equation

Sel,n =
3

2n
R ln

((
T

TE(T )

)n

+ 1

)
, (7)

the lattice molar entropy equation at constant volume

SV,n =
3

n
R ln

((
T

ΘV (T )

)n

+ 1

)
, (8)

the lattice molar entropy equation at constant pressure

SP,n =
CPmax

n
ln

((
T

ΘP (T )

)n

+ 1

)
, (9)

the lattice molar enthalpy equations at constant pressure
for n = 1, 2, and 3:

(674)
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Hp,n=1 = CPmax

[
T +ΘP ln

(
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)]
, (10)

Hp,n=2 = CPmax

[
T −ΘP tan

−1
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T
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, (11)
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(12)

the lattice molar enthalpy equations at constant volume
for n = 1, 2, and 3:
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[
T +ΘV ln

(
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)]
, (13)
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, (14)
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, (15)

the electronic molar enthalpy equations for n = 1, 2,
and 3:

Hel,n=1 =
3

2
R

[
T + TE ln

(
TE

T + TE

)]
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, (18)

were given in Ref. [11].

Substituting n = 3 into Eq. (4) gives the following
equation at low temperature:

CV = 3R

(
T

ΘV (T )

)3

. (19)

From Eq. (3) and Eq. (19), the following equation is ob-
tained:

ΘV (T ) = ΘD(T )

(
5

4π4

)1/3

. (20)

In this study, the heat capacity, enthalpy, and entropy
equations given above will be applied to the constant vol-
ume heat capacity data of diamond and the results will
be compared with the Debye and polynomial models.

2. Results and discussion

Experimental heat capacity data at constant volume of
diamond for the temperature range from 25 K to 1100 K
were obtained from Refs. [12, 13] and are shown in Fig. 1.
The value of ΘV was found to be 468 K. The value of
ΘD(0) was given to be about 2230 K in Refs. [4, 8]. The
heat capacity values calculated by using ΘD = 2230 K
in Eq. (1) and the heat capacity values calculated by
using ΘV = 468 K and n = 3 and n = 2 in Eq. (4) are
shown in Fig. 1.

Fig. 1. Temperature dependence of heat capacity CV

of diamond.

The ΘD(T ) values were calculated from the numerical
solution of Eq. (1). Temperature dependence of ΘD(T ) of
diamond is shown in Fig. 2. The value of ΘD(T ) increases
monotonously from 1822 K to the maximum 2242 K with
increasing temperature from 25 K to 60 K and then de-
creases towards 1860 K at about 160 K.

Fig. 2. Temperature dependence of ΘD(T ) and ΘV (T )
of diamond.

The following equation is obtained from Eqs. (4)
and (20):

n =
log
(

3R
CV
− 1
)

log
(
ΘD(T ) (5/4π4)

1/3
/T
) . (21)
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The temperature and ΘD(T ) dependence of n of diamond
is shown in Fig. 3. The value of n is about 3 from 25 K
to 300 K and exhibits a crossover from 3 to 2 at about
300 K. After 600 K, n takes the value of about 2. Figure 2
and Eq. (21) show that ΘD(T ) depends on temperature
and n.

Fig. 3. Temperature dependence of dimension n of
diamond.

The following equation is obtained from Eq. (4):

ΘV (T ) = T

(
3R

CV
− 1

)1/n

. (22)

The ΘV (T ) values were calculated by using n = 3 at all
temperatures, and by using n = 3 from 25 K to 300 K and
by using n = 2 from 400 K to 1100 K in Eq. (22). Figure 2
shows that the temperature dependence of ΘV (T ) and
ΘD(T ) is similar.

Figure 4 shows the non-monotonic behavior of the
CV /T

3 function at low temperatures. n was taken to
be 3 in this function. It is seen from Eqs. (3) and (19)
that the CV /T

3 is inversely proportional to Θ3
D(T ) and

Θ3
V (T ). Therefore, the CV /T

3 function shows the inverse
behavior to Θ3

D(T ) and Θ3
V (T ).

The root mean square error of prediction (RMSEP) is
obtained from the following equation:

RMSEP(C) =


m∑
i=1

(
CVpred

− CVexp

)2
m


1/2

, (23)

where CVexp is the experimental heat capacity, CVpred
is

the predicted heat capacity and m is the number of heat
capacities. The value of RMSEP obtained for the pro-
posed model by using ΘV (T ) = 468 K and n = 3 from
25 K to 300 K and n = 2 from 400 K to 1100 K was
found to be 0.5671. The value of RMSEP obtained for
the Debye model by using ΘD(0) = 2230 K was found to
be 1.317. These results show that the proposed model
fits the experimental data better than the Debye model
at the given conditions.

The values of entropies of diamond obtained from
the Debye, proposed and polynomial models are shown
in Fig. 5.

Fig. 4. CV /T 3 versus T of diamond.

Fig. 5. Temperature dependence of entropy of
diamond.

The RMSEP values for entropy are obtained from the
following equation:

RMSEP(S) =


m∑
i=1

(Spred − Spoly)
2

m


1/2

, (24)

where Spoly is the entropy obtained from the polynomial
model and Spred is the entropy obtained from proposed
and the Debye models. The values of RMSEP obtained
for the proposed and the Debye models were found to be
0.3682 and 1.501, respectively. These results and Fig. 5
show that the proposed model fits the data better than
the Debye model.

Enthalpy equation cannot be obtained from the Debye
model. The enthalpy values of diamond obtained from
the proposed and polynomial models are shown in Fig. 6.

The RMSEP value for enthalpy is obtained from the
following equation:

RMSEP(H) =


m∑
i=1

(Hpred −Hpoly)
2

m


1/2

, (25)

where Hpoly is the enthalpy obtained from polynomial
model and Hpred is the enthalpy obtained from the pro-
posed model. The value of RMSEP was found to be
93.22. This result and Fig. 6 show that good agreement
has been obtained between the proposed and polynomial
models.
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Fig. 6. Temperature dependence of enthalpy of dia-
mond.

3. Conclusion

The value of ΘV was found to be 468 K for dia-
mond. Diamond shows the dimensionality crossover from
n = 3 to n = 2 after 300 K. The temperature and n
dependences of ΘD(T ) and ΘV (T ) were given and non-
monotonic behavior was discussed. The heat capacity
and entropy values obtained by the proposed models were
compared with the values obtained by the Debye models
by using ΘD(0) = 2230 K. The results have shown that
the proposed models fit the data better than the Debye
models at the given conditions. Enthalpy equation can-
not be obtained from the Debye model. Good agreement
has been found between the enthalpy values obtained by
the proposed and the polynomial models.
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