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In this study we have worked on the numerical solution of the multigroup neutron diffusion equation with
the symmetric radial basis function collocation method. For the spatial approximation of the neutron flux, mul-
tiquadric, inverse multiquadric, and Gaussian basis functions are used as the interpolation functions. To test the
performance of the method, both external and fission source problems are considered in two-dimensional Carte-
sian geometry. The effect of the shape parameter on the convergence and stability of the numerical algorithm is
also investigated. The results have shown that, when the multiquadric is chosen, the symmetric RBF collocation
method converges exponentially, and it is possible to obtain highly accurate multiplication factors and neutron flux
distributions with this algorithm.
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1. Introduction

Since their introduction in 1970s, meshless methods
have become a valuable tool for the numerical solution of
partial differential equations (PDEs). The most signifi-
cant feature of meshless methods is that the field variable
of the PDE can be approximated via nodes, which are not
connected in a predefined manner. The radial basis func-
tion (RBF) collocation method is a strong-form meshless
approach. The method was proposed by Kansa [1] to
study fluid dynamics problems. Kansa’s method is also
known as the asymmetric collocation method due to its
asymmetric collocation matrix. The characteristics of
the asymmetric RBF collocation method for the numeri-
cal solution of neutron diffusion equation is investigated
in [2, 3].

Although cases are very rare, the asymmetric RBF
collocation method may lead to a singular matrix [4].
Based on the Hermite–Birkhoff interpolation Fasshauer
formulated a symmetric version of the RBF colloca-
tion method [5]. By using the derivatives of the ba-
sis functions in accordance with the differential oper-
ators of the PDE and boundary conditions, the sym-
metric RBF collocation yields a symmetric collocation
matrix, and thus it guarantees a nonsingular algorithm.
In this work, the meshless symmetric RBF collocation
method is implemented for the numerical solution of
the neutron diffusion equation. Multiquadric (MQ), in-
verse multiquadric (IMQ) and Gaussian (GA) functions
are used for the spatial approximation, and the per-
formance of the method is investigated via numerical
experiments.
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2. Numerical formulation

For 2D Cartesian geometry the multigroup neutron
diffusion equation with vacuum (Dirichlet) and reflec-
tive (Neumann) boundary conditions is given in operator
form by

Lφ
(m)
g (x) = sg, x ∈ Ω ,

BV φg (x) = 0, x ∈ ΓV ,

BRφg (x) = 0, x ∈ ΓR,

(1)

where Ω is the inner domain, ΓV and ΓR are the vacuum
and reflective boundaries, respectively, and

L = −Dg∇2 + Σr,g −
g−1∑
g′=1

Σs,g′→g,

BV = 1, BR =
∂

∂n
, (2)

sg ≡

{
1

k(m−1)χgF
(m−1), multiplying medium

Sg,ext, nonmultiplying medium
(3)

Here n is the normal derivative, g = 1, . . . , G is the energy
group index, m is the iteration index, φg, Dg, Σr,g, k,
and χg are the neutron flux, diffusion constant, removal
cross-section, multiplication factor, and fission spectrum
function, respectively. Σs,g′→g is the scattering cross-
section from group g

′
to group g, F is the fission source

and Sg,ext is an external source term. The fission source
is defined by

F ≡
G∑

g′=1

νg′Σf,g′φg′ , (4)

where νg′ and Σf,g′ are the number of neutrons emitted
per fission and fission cross-section, respectively. If the
medium is multiplying, then the solution is obtained it-
eratively by the fission source iteration method [3]. For
a non-multiplying medium the solution can be found
directly.
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Numerical approximation starts by defining the nodes
D = {x1, . . . ,xND

}, V = {xND+1, . . . ,xND+NV
} and

R = {xND+NV +1, . . . ,xND+NV +NR
}, where ND, NV ,

and NR are the number of nodes for the inner domain,
vacuum, and reflective boundaries, respectively. Then
the neutron flux is interpolated as

φg (x) ∼=
ND∑
j=1

aj,gL
jψ (x,xj) +

ND+NV∑
j=ND+1

aj,gB
j
V ψ (x,xj)

+

Ntot∑
j=ND+NV +1

aj,gB
j
Rψ (x,xj) . (5)

Here Ntot = ND +NV +NR, aj,g, j = 1, . . . , Ntot are the
unknown coefficients, and the superscript j means that
the operators act on ψ (x,xj) as if it is a function of xj .
The radial basis function is given by

ψ (x,xj) =
∥∥r2 + c2

∥∥q (GMQ),
ψ (x,xj) = exp

(
−
(
r2/c2

))
(GA)

(6)

where r is the distance between nodes, r = ‖x− xj‖, c is
the shape parameter, and q = 1/2 and q = −1/2 for MQ
and IMQ, respectively. Substituting Eq. (5) into (1), and
collocating at interpolation nodes gives LLjψ (xi,xj) LBj

V ψ (xi,xj) LBj
Rψ (xi,xj)

BV L
jψ (xi,xj) BVB

j
V ψ (xi,xj) BVB

j
Rψ (xi,xj)

BRL
jψ (xi,xj) BRB

j
V ψ (xi,xj) BRB

j
Rψ (xi,xj)



×aj,g =

 sg (xi)0

0

 . (7)

The numerical result can be obtained by solving Eq. (7)
to yield aj,g.

3. Results and discussion

To assess the performance of the symmetric RBF col-
location method for the numerical solution of the multi-
group neutron diffusion equation, a one-group external
source problem with a constant source and a three-group
fission source problem are considered. All calculations
are performed with MATHEMATICA. The dimension
of the domain is chosen to be a = 25 cm for both
problems. In case of the constant source problem the
nuclear data and source term are D = 1.77764 cm,
Σr = 0.0143676 cm−1, and S = 1 n /(cm3 s), respec-
tively, and the analytical solution of this problem is given
in [3]. For the fission source case the nuclear data are
given in [2] which results with a k value of 0.75024. The
following error criteria are used to test the accuracy of
the numerical method:
for external source

εRMS =

√√√√ 1

Ntot

Ntot∑
i=1

[
φ (xi)− φ̃ (xi)

]2
, (8)

for fission source

εk =

∣∣∣k − k̃∣∣∣
k

× 100 (9)

where φ̃ and k̃ are the numerical neutron flux distribution
and multiplication factor, respectively.

The variation of εRMS and εk with the inverse of the
node distance for the external and fission source prob-
lems is illustrated in Fig. 1, where c = a

√
0.05. The re-

sults show that the method converges exponentially with
MQ and GA basis functions, but IMQ causes instability
above h−1 = 25. Also, GA converges faster and pro-
duces a higher accuracy than the MQ as the number of
interpolation nodes is increased.

Fig. 1. Variation of εRMS and εk with h−1 for (a) ex-
ternal and (b) fission source problems.

The effect of the shape parameter on the accuracy of
the method is presented in Fig. 2 for the two problems,
where h−1 = 30. In terms of stability MQ has the best
performance since IMQ becomes unstable at a low value
of c, and the GA exhibits an oscillatory behavior as the
value of c increases.

The above mentioned calculations are performed with
uniformly distributed sets of interpolation nodes. Al-
though the results are not presented here, random node
distributions are also employed for the symmetric collo-
cation method, and similar error behaviours are observed
for both problems.
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Fig. 2. Effect of the shape parameter on the accuracy
for (a) external and (b) fission source problems.

4. Conclusion

This paper deals with the numerical solution of the
neutron diffusion equation with the meshless symmetric
radial basis function collocation method. Multiquadric,
inverse multiquadric and Gaussian basis functions are
used as interpolators for the spatial treatment. The re-
sults of the numerical tests for external and fission source
problems have shown that the multiquadric is the best
choice with its exponential convergence when accuracy
and stability are considered together.
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