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Numerically Exact Approach to Ultra-Small Particles
in Near-Critical Mixtures
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The critical Casimir forces between solute particles in a solvent can arise from the medium fluctuations.

The properties of ultra-small particles immersed in a binary liquid mixture close to its consolute point Tc are
studied using the exact statistical-mechanical derivation based on the two-dimensional Ising model. Each solute
particle is represented by a local magnetic field acting on an individual spin. The ensemble average for the distance
between particles placed on the torus is determined as a temperature-dependent function. It has been shown how
the presence of other particles modifies the separation distance for a pair of particles with the same or opposing
preferential adsorption.
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1. Introduction

The first direct measurement of critical Casimir
force [1, 2] between a single colloidal sphere and a flat sil-
ica surface in a water–2,6-lutidine mixture was performed
ten years ago [3]. It created a tremendous impulse for
further experimental and theoretical studies of the crit-
ical behaviour of colloidal suspensions [4–11]. One of
the most intensively researched issues is the aggregation
transition originating from the confinement of the solvent
critical fluctuations between the surfaces of distinct col-
loids [3, 5, 12]. Such problems are often analysed using
mean-field theories or simulations [13–17]. Nevertheless,
there is still much to understand, particularly near the
critical point where the role of fluctuations is enhanced
and the accuracy of these methods is limited.

A binary mixture of liquids A and B can exist as two
separate phases or as a single phase, depending on the
temperature. The temperature–composition diagram of
the A–B mixture can have an upper critical solution tem-
perature or a lower one or both of them. In the present
paper, this first case will be mostly referred, where the
T > Tc regime corresponds to the mixed (disordered)
state of the binary mixture, whereas T < Tc relates to
the demixed (ordered) state. By tuning temperature,
the solvent correlation length can be changed, affecting
the magnitude and range of interactions. The nature of
the observed critical behavior significantly depends on
the surface properties of solute particles [18]. Generally,
these forces are attractive if the boundary conditions are
symmetric, and repulsive if the boundary conditions are
asymmetric [2].

Typically, the size involving the solute particles is char-
acteristic for a mesoscopic system (a few hundred nm).
However, when we deal with ultra-small particles, their
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internal structure can be neglected. The only thing that
matters is the fact that their surface may prefer one of the
two components of the mixture. In fact, this approach
is focused on a very small amount of solute particles of
a size comparable with the size of the solvent particles.
Taking the system of water and 2,6-lutidine with a molec-
ular diameter of 0.275 nm and 0.67 nm [19] as a binary
mixture, only the ultra-small particles with a size of a
few nm could be used [20, 21]. The interactions between
solute particles embedded in a fluctuating medium are
expected when the two particles are separated by a dis-
tance shorter than the correlation length of local concen-
tration fluctuations. As the correlation length diverges
when the critical temperature is approached, the most
pronounced effects are found here. Moreover, because of
the universality of critical phenomena, they are rather
insensitive to the specific materials, so one can expect
similar temperature dependence for various solvents.

For a classical binary mixture, the consolute (demix-
ing) point corresponds to the second-order phase tran-
sition of the Ising universality class [22]. Therefore,
the system properties have been modelled by the two-
dimensional Ising model on the square lattice on a torus
with a linear size up to N = 15. Any individual spin
represents a small volume of the binary mixture (a cell).
The states of spin “up”/“down” refer to the cell with a
high/low concentration of the component, e.g. A, respec-
tively. Thanks to the choice of the torus geometry, the
influence of the walls has been eliminated. Nevertheless,
as the system has a finite size, the critical point position
is shifted from the critical point position in the thermody-
namic limit [23] (for a square lattice, Tc ≈ 2.269 J/kB).
It is worth adding that generally for periodic systems,
there are much weaker corrections to scaling than for the
system where the space translation symmetry is broken.

An exact expression of the partition function for the
Ising system on the square lattice wrapped on a torus was
given by Kaufman [24]. The exact partition function of
the Ising model on the general two-dimensional lattice on
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a torus was derived by Morita [25]. In the present paper,
the key is to derive the partition function for the Ising
system (the dispersion medium) with a non-zero mag-
netic field at a few lattice sites. The sign of the magnetic
field corresponds to the affinity of a solute particle, that
prefers to be surrounded only by one component of the
mixture. Based on the equilibrium statistical thermo-
dynamics, the statistics of configurations is governed by
a Boltzmann weight that depends both on the position
of the solute particles and on the state of the medium.
Therefore, the temperature plays the role of a unique pa-
rameter to control the range and strength of interaction.
In order to determine the average distance between indi-
vidual solute particles, the canonical partition function
of the whole system should be used. It contains all the
information needed to predict the macroscopic behavior
of a system. The study results indicate that despite the
simplicity of the model, it seems to capture the essential
physics of a few ultra-small particles in a binary mixture
over the wide range of temperatures.

This paper has two objectives. First, we intend to
check whether the ultra-small particles interacting by the
Casimir-like forces reproduce the main characteristics of
the critical Casimir forces for two particles with vari-
ous preferential adsorptions. Second, as the experiments
provide an evidence for non-additive nature of the criti-
cal Casimir forces [7, 26], the interactions cannot be de-
scribed with pair potentials in this case. As the proposed
numerically exact method can capture such collective be-
haviour, we intend to investigate how the presence of an
extra particle modifies the average distance between the
other two particles.

The remainder of this paper is organized as follows. In
Sect. 2 the model system is outlined, whereas the results
of the investigations are presented in Sect. 3. Finally, in
Sect. 4, some concluding remarks are made.

2. Model

The parameter that is crucial to describe the phe-
nomenon of solute particle aggregation is the average
distance between particles. However, when all non-
equivalent particle settings on the torus and, for each
setting, all spin configurations should be taken into ac-
count, therefore, the number of system states becomes
very large. Fortunately, these requirements can be met
by the transfer matrix method [27, 28] that is powerful
and can be applied to the Ising-like systems, also with the
magnetic field acting on individual sites of the lattice.

The two-dimensional Ising model, on the square lattice
N × N with cyclic boundary conditions in the both
directions, is considered. The energy for a configuration
{S} of spins is given by the following Hamiltonian:

H = −J

 ∑
{i,j},{k,l}

Si,jSk,l − h1,2
∑

particle
positions

Si,j

 , (1)

with J > 0 and Si,j = ±1. The first sum is taken over
the nearest neighbors, while the second one is performed
on the individual spins only. Affecting the medium
in the immediate vicinity the presence of solute parti-
cles is manifested only by favouring one of the mixture
phases. For different solute particles, the preferential
adsorption can vary, which entails the presence of dif-
ferent on-site magnetic fields h1 or h2. Moreover, as-
suming that the system is at the critical concentration,
a bulk field conjugated to the order parameter takes
the value zero.

For the torus of linear size N , the average distance
between any two lattice sites can be determined as
the arithmetic average for all site positions giving the
(approximate) formula L = 0.38078N +0.04092. There-
fore, bearing in mind the previous paragraph, one can
say that the size L corresponds to the average distance
between two colloidal particles without preferential ad-
sorption. These sizes are listed in Table I.

TABLE ICharacteristic distances on a torus.

Linear
torus size N

Average
distance L

7 2.707756
9 3.467021
11 4.228267
13 4.990644
15 5.753726

In the Ising model, the deviation from the criticality is
described by the reduced temperature τ = (T − Tc)/Tc,
where Tc is the bulk critical temperature [29]. The ap-
propriate scaling variable related to temperature is the
ratio between the average distance and bulk correlation
length in the mixed phase z = sgn(τ)L/ξτ = Lτν/ξ+0 .
For the two-dimensional Ising model, the universal expo-
nent is ν = 1 and non-universal amplitude takes on value
ξ+0 = 0.5673 [30, 31].

In order to calculate the probability that the two
solute particles are at the distance li, the following
formula can be applied:

pi =
∑

all spin configurations
particles at the distance li

e−βH({S},h1,2)/Z, (2)

where β = 1/kBT , kB is the Boltzmann constant and Z
is the partition function

Z =
∑

all system
states

e−βH({S},h1,2). (3)

Now, averages of physical quantities, as the separation
distance of two solute particles, can be expressed by the
formula
〈l〉 =

∑
all distances

pili. (4)

As it does not limit the considerations, one of the solute
particles has always been located in the same lattice site.
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Furthermore, using the symmetry of the square lattice on
a torus, the number of different positions of the second
particle can be significantly reduced, which greatly sim-
plifies the calculations. When three particles are present
and the distance between a given pair of particles is to
be determined, all non-equivalent positions of the third
particle has to be taken into account.

3. Results

The transfer matrix method, allows to study the im-
pact of temperature on the ensemble average distance in
any pair of solute particles. In general, the method is ap-
plicable whenever the partition function can be expressed
as a product of matrices [32]:

Z =
∑

all states of
the 1st column

∑
all states of

the 2nd column

. . .
∑

all states of
the N-th column

〈S1|T12|S2〉〈S2|T23|S3〉 . . . 〈SN |TN1|S1〉. (5)

For our case, N is the linear size of the torus and thus
the number of columns. Because each column consists of
N spins, the number of states in each column is 2N .

When the system is homogeneous, one has to deal with
a single execution of repeated multiplication of the same
matrix T ≡ Ti i+1. As the model gets complex (for exam-
ple, due to an on-site magnetic field present in one of the
columns), the transfer matrix method also gets complex.
Similarly, the nonmagnetic site (the lack of a spin) can be
included. As a result, one is forced to execute for all non-
equivalent particle positions the multiplication of several
types of Ti i+1 matrices, which significantly increases the
computation time.

3.1. Two particles

The calculations were carried out in a wide range
of magnetic fields for particles with the same or op-
posing preferential adsorption (see Fig. 1). The re-
sults for the representative case |h1| = 1 are presented
in Figs. 2 and 3. The average distance between par-
ticles without preferential adsorption is taken as the
reference case.

Fig. 1. The temperature-dependent average distance
between two solute particles for different preferential ad-
sorptions (the on-site magnetic field). The torus linear
size is N = 13.

Fig. 2. The normalized average distance between two
particles with the same preferential adsorption (h1 = 1)
as a function of scaling variable for different system
sizes. The inset presents the size-dependent average
distances for a few values of the scaling parameter Lτ
indicated by the arrows in the main panel.

As one could expect, at equilibrium the particles pre-
ferring the same component of the mixture are on av-
erage closer to each other than the particles without
preferential adsorption. Furthermore, a pair of parti-
cles preferring different components of the mixture are
on average further apart than in the reference case. As
the fluctuation-induced forces are the strongest near the
continuous phase transition, the effect on changing the
distance between particles is the most visible here. Nat-
urally, it can be noticed that even in this case the relative
deviation from the reference value L varies by no more
than half a percent. The reason lies in the model assump-
tion: the influence of an ultra-small particle is reduced
to a single lattice site representing one cell of the binary
mixture.

The simplest extension of the point-like particles is to
present a solute particle as a single non-magnetic lat-
tice site not interacting with the four nearest neighbors.
Moreover, its influence manifests as the magnetic field
(a preferential adsorption) acting on all (eight) sites sur-
rounding such a “silent” site (the one-site block). When
the identical/opposing magnetic fields from two close-
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Fig. 3. The normalized average distance between two
solute particles with the opposing preferential adsorp-
tion (|h1| = 1) as a function of scaling variable for differ-
ent system sizes. The inset presents the size-dependent
average distances for a few values of the scaling param-
eter Lτ indicated by the arrows in the main panel.

Fig. 4. The comparison of the point-like and one-site
block cases for the system size N = 11 and on-site mag-
netic field |h1| = 0, 1.

lying particles overlap, the field value doubles/cancels
at the sites belonging to the both surroundings. The
comparison of the point-like and one-site block cases
for the same system size and the same field has been
presented in Fig. 4. As one can see, the effect is
clearly stronger when a solute particle is modelled
by the one-site block.

For the case without preferential adsorption (h1 =
0), contrary to the point-like particles, when the aver-
age distance does not depend on temperature, for the
one-block particles, the lower temperature, the smaller
average distance between particles. The reason lies
in the fact that when the both particles (the “silent”
sites) are directly adjacent to each other, the total
number of eliminated bonds falls from eight to seven.
As a result, for such configurations the total energy de-
creases by the one-bond energy. The effect is enhanced

at low temperatures, when the spins tend to set up in
the same direction (the one-bond energy ≈ −J). There-
fore, the configurations with two particles lying next to
each other become more likely and, as a result, the av-
erage distance between the particles decreases. When
a preferential adsorption appears (h1 > 0) around the
both “silent” points, then from a certain value of h1 its
impact becomes dominant. As a result, configurations
with non-adjoining particles are more likely, so the av-
erage distance between particles increases. For oppos-
ing preferential adsorptions, their influence compensates
each other, and thus the average distance between parti-
cles does not change significantly for low temperatures.
In general, the one-block case was not examined in detail
as it is no longer covered by the scope of this article.

Unfortunately, for the point-like case the calculation
for systems larger than N = 15 are very complex and
time consuming. Therefore, the limiting form of the
curve when N grows cannot be determined conclusively.
However, when the system size raises the total number of
sites increases, whereas the number of solute particles is
fixed. Therefore, their impact on the behavior of the en-
tire system should disappear. Thus, the curves describing
the separation distances between particles in pairs, from
a certain system size L0, should start to decrease. The
plots presented as the insets in Figs. 2 and 3 seem to
support this scenario. Although, the maxima are not yet
visible on any of the drawings, on closer inspection, it can
be found that there is a maximum at L0 = 4.99 . . . for a
pair with opposing preferential adsorptions at τ = 0.

3.2. Three particles

As it was already emphasized, when three particles are
present the pairwise description fails [33]. Therefore, the
goal is to determine the average distance between two
particles when the third one is present. As it turned
out, the key is whether both particles have the same or
opposing surface properties. The preferential adsorption
of the coupled particles is governed by the parameter h1,
while the extra particle properties are controlled by the
parameter h2.

As Fig. 5 shows when both particles have the same sur-
face preferences, the presence of another (identical) par-
ticle keeps them somewhat away from each other. This
effect seems to be contrary to intuition. Two particles
with the same preferential adsorption attract each other
due to the medium fluctuations, but when one more iden-
tical particle is added, the attraction becomes slightly
weaker! This behavior will become clearer when one no-
tices that the third particle is not solely located between
the two particles constituting the pair. In order to calcu-
late the equilibrium distance, all allowed positions of the
third particle have to be taken into consideration. For
the majority of configurations, the additional particle is
not located between the particles belonging to the pair,
but outside them. As a result, the distance between any
two particles in a system of many identical particles will
be slightly larger than for an isolated pair.
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Fig. 5. The temperature-dependent average distance
between two identical solute particles (h1 = 1) when a
three-particle system is considered. Surface properties
of the third particle change over a wide range of h2 and
curves are ordered as in the legend from top to bottom.
Inset: the temperature-dependent average distance be-
tween two solute particles with opposing preferential ad-
sorptions is insensitive to the presence of an additional
particle (regardless of its preferential adsorption). The
torus linear size is N = 7.

In turn when the preferential adsorption of the third
particle is opposing to the preferential adsorption in a
pair, the final effect is opposite. It leads to a reduction
in the distance between particles. Of course, as in the
previous case, the dominant behavior between the parti-
cles in a selected pair remains unchanged: particles with
the same preferential absorption attract each other.

When a couple of particles with opposing surface pref-
erences is considered, the situation is completely differ-
ent. The presence of other particles about any prefer-
ences does not affect the average distance between parti-
cles in the pair (see the inset in Fig. 5). The dotted-line
curve in the inset symbolizes all curves for h1 = ±1 and
any h2.

4. Conclusions

Suspensions in liquids are of particular interest because
of their potential scientific significance and technological
applications [34–36]. We have investigated the simple
but numerically exactly solvable model for a few solute
particles inserted into a binary mixture. The transfer
matrix method enables to study the static, equilibrium
properties of particles with the same or different adsorp-
tion preferences. The degrees of freedom of a few solute
particles and solvent have been fully taken into account
without any approximation.

In the proposed model the dispersion medium is rep-
resented by the Ising model, whereas a solute particle is
revealed as an on-site magnetic field. In order to place the
proposed model in a broader context, its simplest gener-
alization for a one-block case has been initially analysed,
when a solute particle is presented as a single “silent”

site not interacting with the nearest neighbors but its
influence on the medium is manifested by the preferen-
tial adsorption (an on-site magnetic field) of the eight
surrounding sites.

In order to obtain the desired functional properties the
particle surface is often functionalized with surfactants
or macromolecules to induce repulsions or attraction be-
tween particles. The present study has confirmed that
the critical Casimir-like force between two identical bod-
ies are always attractive and become repulsive if their
preferential adsorptions are different. These fluctuation-
induced forces are most pronounced near criticality.

Moreover, it has been demonstrated that the average
distance between two solute particles with fixed prefer-
ential adsorption can be modified if other particles are
present. Namely, if two particles immersed in a binary
mixture, prefer the same mixture component they still
attract each other but this effect can be a bit tuned.

In contrast, solute particles with the opposing prefer-
ential adsorption do not change their average distances
in the presence of other particles. Therefore, it can be
anticipated that the critical aggregation phenomenon is
more subtle and dependent on the many-body interac-
tions of colloidal particles with the same and opposing
preferences.
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