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Momentum in the Dynamics of Variable-Mass Systems:
Classical and Relativistic Case
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We discuss the role of a momentum vector in the description of dynamics of systems with variable mass,

and show some ambiguity in expressing Newton’s 2nd law of dynamics in terms of momentum change in time for
variable-mass systems. A simple expression that the time-derivative of the momentum of the body with variable
mass is equal to the net external force is not always true (only if a special frame of reference is assumed). In
basic textbooks and multiple lecture notes the correct equation of motion for a variable-mass system (including
relative velocities of the masses entering or leaving the body) is not sufficiently discussed, leading to some problems
with understanding the dynamics of these systems among students. We also show how the equation of motion in
classical case (in translational motion) can be easily expanded to the relativistic case and discuss a motion of a
relativistic rocket. It is of course true that most of the good literature treats the problem accurately, but some of
the commonly used textbooks do not. The purpose of our letter is to pay attention to the problem of dynamics of
variable-mass systems and show yet another perspective of the subject.
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1. Introduction

Momentum is a quantity commonly used to describe
the state of the system’s motion. Frequently, the mo-
mentum p is used to present dynamical equations in the
form that the momentum’s first derivative equals the net
force (F ) acting on the body, i.e. dp

dt = F . This elegant
way of writing Newton’s second law of dynamics is fully
equivalent to the classic expression ma = F (m — mass,
a — acceleration), but only for systems with a constant
mass. The mindless use of the momentum to write equa-
tions of motion for a variable-mass system is a common
behavior and can lead to serious mistakes, reproduced
in many lectures and in many textbooks in physics †.
Discussion on this subject is often unclear. Our publica-
tion will derive the equation of motion of a variable-mass
body based on the classical principles of dynamics. In a
very simple way, a classical equation will be generalized
to the relativistic case. The conditions will be strictly
defined when it can be reduced to the simple formula us-
ing a momentum, independently of the inertial frame of
reference. The combination of a generalized equations of
motion for systems with variable mass and the relativis-
tic principle of mass and energy equivalence (E = mc2)
leads to equations of dynamics in special relativity.

∗corresponding author; e-mail: wolny@fis.agh.edu.pl

†In many textbooks commonly used in the didactics of physics
the formulations or examples that could lead a reader to incorrect
interpretations of the used formulae appear. This is even more true
for lecture notes or materials unpublished. The problem is raised
in literature (including scientific papers) by some authors (see for
instance Refs. [1, 2]). However, we claim that the topic still needs
attention.

The motivation for writing this letter is the universal
manner of writing the second law of dynamics in the form
of a time-derivative of momentum, i.e. dp

dt = F . This
record is valid only for systems with a constant mass,
when it is equivalent to the second principle of Newton’s
dynamics, i.e.: ma = m dv

dt = F ‡. For systems with
variable mass, the two above formulae are contradictory.
The latter equation, ma = F , is valid, and it remains
identical in all inertial reference systems. The expression
with momentum can be valid only for strictly defined
systems, if the conditions of the task allow such a choice.

2. Classical mechanical system
with variable mass

The simplest case of a variable-mass system is a rocket
engine. This is an example of the interaction of only two
bodies: a rocket and fuel ejected from it. Let us denote
by µ ≡ dm

dt a mass change of a rocket (in kilograms per
second, kg/s; note that µ < 0, since the mass m of a
rocket decreases; a fuel combustion rate is then − dm

dt ), by
v the velocity vector of the rocket, and by u the velocity
vector of ejected fuel relative to the rocket (in rocket’s
own frame of reference).

We will now use the third law of dynamics, i.e.
the equality of forces of mutual interaction of bodies,

‡Wikipedia: en.wikipedia.org/wiki/Newton’s_laws_of_motion,
entry: “Newton’s laws of motion”. In paragraph “Newton’s second
law” authors suggest (based on three Refs. [17–19]) that formulae
F = dp

dt
and F = ma are exactly equivalent, “Since Newton’s

second law is valid only for constant-mass systems (. . .)”. This
is, however, only true in classical mechanics. If relativistic case
is considered, the momentum becomes not a suitable variable in
dynamics, as we discuss in later parts of this work.
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to describe dynamics of the rocket. During a short
time τ the portion of fuel mass ∆m = −µτ gets ve-
locity u, so it must move in accelerated motion with ac-
celeration vector agas = u

τ , under force Fgas, so that
Fgas = ∆magas = −µτ u

τ = −µu. According to the third
law of dynamics in the two-body interaction, which is the
system rocket–exhaust, the recoil force is opposite to the
net force of gases, and it causes the thrust of the rocket,
i.e. Fthrust = −Fgas = µu. This equation is correct if
the whole interaction takes place in a two-body system
(rocket–exhaust gases). The origin of this interaction is
the pressure of the hot gas. In the case of partial in-
teraction (e.g. part of the gases escapes through engine
leaks), corrections expressed by appropriate coefficients
of less than one should be introduced. Finally, for an
ideal rocket engine, the simple use of dynamics laws leads
to the equation

m
dv

dt
= Fext + µu, (1)

known as the Meshchersky§ equation¶. Fext is the exter-
nal force (e.g. gravity or air resistance). The solution of
the Meshchersky equation, assuming a constant µ and u,
and no external forces, is the Tsiolkovsky formula for the
final speed of the rocket (and assuming the initial speed
of a rocket equal to 0)

v = u ln
m0

m
, (2)

where m0 is the starting mass of the rocket, m is the
instantaneous mass, m = m(t) = m0 + µt (µ < 0).

The formula in Eq. (1) can be extended to the case,
where several different sources of thrust are present,
including the mass of air taken from outside, used for
fuel combustion

m
dv

dt
= Fext +

n∑
i=1

µiui. (3)

An example of the application of Eq. (3) may be a
jet plane flying at velocity v and sucking in air from
the outside in the amount of µ1 > 0 kg/s with the
relative velocity u1 = −v. The air is mixed with the
aviation fuel, which is burned at the rate µfuel > 0 kg/s.
After combustion of the mixture of fuel with air in the

§Ivan Vsevolodovich Meshchersky (1859–1935) — Russian
mathematician and physicist, known for his works on mechanics.
In 1893 he described motion of a variable-mass point by the above-
mentioned equation, followed by a detailed description in his Mas-
ter thesis The dynamics of a point of variable mass published in
1897, and extension of the equations of motion in general case.

¶Equation (1) appears of course in many good handbooks and
publications (mostly older ones, see for instance Ref. [3] and foot-
note ‡, and further references therein), however, many commonly
used ones do not discuss the problem of variable-mass systems in
a proper way, also at the very basic level, and do not even men-
tion the Meshchersky equation as a correct equation of motion for
systems with variable mass (see for instance Ref. [4]). This leaves
the reader in the belief that the equation dp

dt
= F is more general

than the equation ma = F .

engine’s chamber it is ejected through the jet engine
nozzles in the form of exhaust gases in the amount
µ2 = (µ1 + µfuel) kg/s at the relative velocity u2 with
the opposite direction to v. The equation of motion
of such an aircraft with an ideal jet engine is then the
following:

m
dv

dt
= Fdrag + µ1u1 + µ2u2 =

Fdrag − µ1v + (µ1 + µfuel)u2, (4)
where m is the current mass of the aircraft with fuel,
m = m0−µ2t (µ2 > 0), and Fdrag is the speed dependent
air resistance acting on the aircraft (playing a role of
the external force). This approach to the problem is
logical and very simple, and can be understood even for
average student. In many textbooks, tasks of this type
are very often inaccurately explained, which may lead to
random, often erroneous final results.

Exercise 1. Thrust of the jet aircraft. A jet aircraft
moves at constant speed 250 m/s, which is also a speed
of sucked air into the engine. In each second the mix-
ture of 75 kg of air and 3 kg of aviation fuel is combusted
in the engine, and the exhaust gases are ejected with
the speed 500 m/s. What is the total thrust of the jet?
1. Example of a wrong solution (frequently observed in
textbooks).
An incorrect assumption is that the total mass mtot =
75 + 3 = 78 kg of the gases is ejected with a relative
speed vrel = 500 − 250 = 250 m/s. The thrust is then
wrongly assumed to be: Fthrust = mtotvrel = 78×250 =
19, 500 N.
2. Correct solution.
The correct solution is obtained, if Eq. (4) is used for
a thrust force, i.e. Fthrust = −µ1v+ (µ1 + µfuel)u2. We
have: µ1 = 75 kg/s, µfuel = 3 kg/s, µ1+µfuel = 78 kg/s,
v = 250 m/s, and u2 = 500 m/s. Thus, the total thrust
is: Fthrust = −75× 250 + 78× 500 = 20, 250 N.

By introducing the velocity of exhaust gases with re-
spect to the laboratory (LAB) frame of reference (resting
reference frame), v1, so that u = v1−v, we get after the
transformations of Eq. (1):

m
dv

dt
+ v

dm

dt
= Fext + µv1. (5)

After entering the momentum, p = mv, into Eq. (5), we
get

dp

dt
= Fext + µv1. (6)

From Eq. (6), we can go to the law of conservation of mo-
mentum. The momentum of the body (also of the vari-
able mass) is conserved provided that the sum of external
forces and recoil is equal to zero: Fext + µv1 = 0. The
appearance of velocity v1 limits the applicability of the
law to only selected systems. The law of conservation of
momentum for the rocket with variable mass, thus, loses
its universality and becomes a special case. Of course,
you can take all the bodies interacting with each other
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(e.g. a rocket with exhaust gases is a system with a con-
stant mass as a whole), then the forces of mutual interac-
tion between all bodies are balanced. For such an overall
system, the conservation principle of the momentum re-
mains, as commonly known (e.g. for the centre of mass
of the system). However, the applicability of the law is
still limited. The law of energy conservation must be in-
cluded. For a two-body system, the solvability is only in
two extreme cases, see elastic collisions (we assume full
mechanical energy conservation) or completely inelastic
collisions (we abandon the law of energy conservation,
but we assume that all components will merge to one
body). These are only hypothetical cases and often have
little to do with the actual course of the phenomenon.

Equation (6) is a correct form of the variable-mass
equation of motion with the use of momentum. Only
in the reference frame of the exhaust gas, if it is also an
inertial frame, the velocity v1 takes 0 and Eq. (6) takes
the form

dp

dt
= Fext. (7)

Equation (7) is the simplest, but not always true, and
also easily leads to the law of conservation of momen-
tum. Using it requires the use of an exhaust gas’s own
reference frame, which is often a non-inertial frame (e.g.
associated to a rocket). In addition, in the case of the
generalized Eq. (3), the common own reference frame for
bodies with several different velocities, may not exist.

A good example illustrating the above issue is the
scheme: a barge flowing on the water and the sand falling
on or from the barge. If the sand falls on the barge
from the belt conveyor moving with a constant speed v1

against a LAB reference frame, the formula in Eq. (7)
written in the sand’s own reference frame can be used.
However, if the sand spills out of the barge (e.g. it is
thrown into the water by a conveyor through the stern),
Eq. (7) is not true, since the sand’s own reference frame
is also the non-inertial frame of the barge itself and the
fictitious forces must be introduced [5].

3. Variable-mass system: relativistic case

Another case is the use of Eq. (7) in relativity theory.
This is possible due to the zero initial speed of the grow-
ing part of the relativistic mass. It is, however, again not
the most general formula. Let us now write the formula
in Eq. (6) in the relativistic case. In the relativistic case
we assume the equivalence of mass and energy written
as E = mc2, where m is a speed-dependent relativis-
tic mass, m = m(v). Under the force Fext the power
transferred to the system is dE

dt = Fext · v, therefore
the rate of change of the relativistic mass is given by
the formula

µ ≡ dm

dt
=

d

dt

(
E

c2

)
=

Fext · v
c2

. (8)

By inserting the formula in Eq. (8) to Eq. (1), after tak-
ing u = −v (v1 = 0, where v1 is the velocity vector
of the relativistically growing mass in the LAB system,

which is 0), we obtain a commonly known formula for
the acceleration of the relativistic system written in the
form

m
dv

dt
= Fext −

Fext · v
c2

v. (9)

Formula in Eq. (9) is a relativistic equivalent of the clas-
sical formula for a dynamics of the variable-mass system
— Eq. (1). Writing Eq. (9) in the special case of an own
frame of reference, i.e. when v1 = 0, we get

dp

dt
= Fext. (10)

Equations (9) and (10) are equivalent to each other if
the own frame of reference is assumed (compare with
Ref. [6]), and they are the result from the corresponding
classic relations — Eqs. (1) and (6).

It must be remembered, however, that Eq. (10) is valid
only in the specific case described, when the total mass
of a single object is considered. This case is equivalent to
the above-discussed classical example of throwing sand
from above on a moving barge, where the equation ex-
pressed by the momentum also applies. The equation
expressed by the acceleration (a = dv

dt ), i.e. Eq. (9)
is completely equivalent to the latter. Many authors of
textbooks draw the conclusion here about the superior-
ity of the momentum- over acceleration-based dynamical
equations‖. This is an incorrect and erroneous conclu-
sion, because it is only met for a specific situation.

We can additionally assume that the relativistic mass
is expressed by the formula m(v) = m0γ, where m0 is
the rest mass, and γ = γ(v) is the relativistic factor,
and calculate the expression for the change of relativistic
mass µ = dm

dt (keeping m0 = const(t)). After inserting
it into Eq. (1), and still taking u = −v (v1 = 0), and
after simple calculations we get the relativistic equation
of motion

m0
dv

dt
=
F
‖
ext

γ3
, (11)

or, after dividing by m0, and denoting a = dv
dt

and a0 =
F

‖
ext

m0
,

a =
a0
γ3
, (12)

where F ‖ext is the component of the force taken in the
direction parallel to the velocity vector of the reference
frame, i.e. F ‖ext = (Fext · vv ), vector a is the acceleration
in the LAB frame in the parallel direction, and vector
a0 — the acceleration in the own reference frame, also

‖For example: in Chapter 37-11 of Ref. [4] authors suggest that
by introducing a new definition of momentum in the relativistic
case the law of conversation of momentum still holds in different
inertial frames. We show that Eq. (10) with no external forces truly
presents a law of conservation of momentum only if the special case
of the own reference frame is considered. Moreover, if this condition
is fulfilled, the two expressions for the second Newton law (with
acceleration and momentum) are equivalent.
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along vector v. Equation (12) is usually derived directly
from the Lorentz transformation, which additionally
confirms the validity of the classical equation of motion
for systems with variable mass.

Exercise 2. Derivation of Eqs. (11) and (12). As-
sume the relativistic mass m(v) = γm0 with γ(v) ≡

1(
1−(v

c )
2
)1/2 , and m0 = const(t), and starting from a

general formula in Eq. (1) derive Eq. (12) for the rela-
tivistic transformation of acceleration.
Solution
1. First we will derive the formula for the change of
relativistic mass:
µ = dm

dt = d
dt (γm0) = m0

dγ
dt = m0

1(
1−( v

c )
2
)3/2

v
c2 ·

dv
dt = m0γ

3 v
c2 ·

dv
dt .

2. Now we can insert the above term to Eq. (1), tak-
ing m = γm0 and u = −v. We must assume a par-
allel component of the external force F ‖ext, calculated
along direction of the vector v (velocity of the refer-
ence frame), since we are interested in the relativistic
transformation of the parallel components of the accel-
eration vector. We get
γm0

dv
dt = F

‖
ext −

(
m0γ

3 v
c2

dv
dt

)
v ⇔

γm0
dv
dt

(
1 + γ2 v

2

c2

)
= F

‖
ext ⇔

γ3m0
dv
dt = F

‖
ext ⇔ dv

dt = 1
γ3

F
‖
ext

m0
.

If we now define the parallel component of the accel-
eration vector in the own reference frame as a0 =

F
‖
ext

m0

and the same vector in the LAB system as a = dv
dt , we

finally get Eq. (12).

If we allow the change of the rest mass of the ob-
ject (e.g. in the case of a relativistic rocket) then also
Eq. (10) is not invariant and must be modified accord-
ingly. Let us now assume m0 = m0(t) and modify the
result of calculation for the mass change in Exercise 2,
i.e. µ = dm

dt = d
dt [γ(v)m0(t)]. Vector v is the velocity

of the rocket (it is also a vector of the moving reference
system measured against LAB). Equation (6) written in
the relativistic case of the variable rest mass gets

dp

dt
= Fext + γµ0v2 + γ3m0

v

c2
· dv

dt
v2, (13)

where µ0 = dm0

dt , and v2 is the velocity vector of the
ejected “relativistic” gases (in the LAB reference frame).
After introducing a relativistic momentum, p = γm0v,
and assuming collinear vectors v2 and v (measured in
the LAB system), we can use the relativistic velocity-
addition formula, u = v2−v

1− v
c2 v2

, to write Eq. (5) for the

relativistic case

m0
dv

dt
=
F
‖
ext

γ3
+

1

γ2
µ0u. (14)

We see that taking µ0 = 0 (considering a constant rest
mass) we come back to Eq. (11).

Again, we see that the equation of motion written in
the momentum domain is completely equivalent to the
one written in the acceleration domain. Saying that
Eq. (10) or Eq. (13) are more general than Eqs. (9)
or (14), in the relativistic case most particularly, is
wrong. Because momentum is not a good dynamic vari-
able, the law of conservation of momentum in the rela-
tivistic case is replaced by the law of four-momentum,
resulting from the unique metric used in the Minkowski
space.

4. Conclusions

The publication discusses the dynamics equations of
variable-mass systems known from the literature. Large
confusions are introduced by these equations, which on
the one hand simplify the notation and calculations, but
on the other hand, are only true after fulfilling a number
of specific assumptions. Often the assumptions needed
are ignored and the simplified equation of dynamics is
used inappropriately. In particular, the momentum of
the moving body is a good example of a physical quan-
tity which may cause the trouble. Equations written us-
ing the momentum are not invariant after transformation
to another frame of reference (also: the inertial frame).
This trap often leads to incorrect use of dynamics equa-
tions for systems with variable mass. The safest is to use
Eq. (1) or Eq. (3) in the generalized form. These equa-
tions are a simple result of a direct use of the Newton
laws of dynamics. It is safer to use interactions between
bodies, and by this the 3rd law of dynamics, and to avoid
the conservations laws (of momentum, angular momen-
tum, or energy) that are only met in specific, hypothet-
ical conditions. This approach allows the use of classic
formulae to describe also the dynamics of relativistic sys-
tems. Because momentum is not a good dynamic quan-
tity in the relativistic theory, the law of conservation of
momentum is replaced by the law of conservation of the
four-momentum, resulting from the unique metric used
in the Minkowski space.

In conclusion, it should be noted that momentum is
not a good dynamic variable and the elegant way of writ-
ing the equations of motion using momentum is limited
to specific reference frames. This is particularly evident
for systems with variable mass. In turn, taking into
account the two-bodies interactions in classic Newton’s
equations of dynamics, we obtain completely correct and
very clearly written equations of dynamics, which suc-
cessfully also describe relativistic phenomena. Each of
the arguments quoted here is widely known, but they are
often incorrectly used or explained, especially in the ed-
ucation process of the new generation of physicists and
engineers.
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