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We have presented in this paper a systematic study predictive of the physical elastic constants, thermoelectric
properties, correction of the gap, and the polarization by the application of spin–orbit coupling on Ti2PdX com-
pounds (X = Al, Ga, and In) using first principles quantum mechanics calculations. The structural optimization
was performed using generalized gradient approximation and spin–orbit coupling within full potential linear aug-
mented plane wave method. The alloys are found to be ferromagnetic semi-metallic in the Hg2CuTi structure-type
with a total magnetic moment per unit cell equal to 3.00 µB. The stability is assessed from the physical point
of view. The half-metallicity is conserved when varying the lattice constant from 5.8 to 7.0 Å. The compounds
obey the Slater rule Mt = Zt − 24. The thermoelectric performance of our compounds are done by combining
the results of ab initio band-structure calculations and the Boltzmann transport theory in the framework of the
constant relaxation time (τ) approximations as incorporated in BoltzTraP code.
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1. Introduction

German mining engineer and chemist Friedrich Heusler
was the first to study such alloys in 1903. These alloys
contain two proportions of copper, a proportion of man-
ganese and a proportion of tin, which give Cu2MnSn and
having the following properties. Its magnetism varies
considerably with heat and composition [1]. They were
found to have room-temperature saturation induction of
about 8000 Gs, which is higher than that of nickel (about
6100 Gs), but smaller than that of iron (about 21500 Gs).
First studies, out by Bradley and Rogers [2–4] in 1934,
showed that the ferromagnetic phase at room tempera-
ture corresponded to a totally ordered L21 structure [5].
This structure (Cu2MnAl) is characterized by a cubic
primitive lattice consisting of copper atoms with meshes
centered alternately by manganese and aluminum atoms
with a lattice parameter of 5.95 Å. The molten alloy
has a solidification temperature of about 910 ◦C. When
cooled below this temperature, it is transformed to the
beta cubic centered disordered solid phase. Below 750 ◦C,
a B2 ordered lattice is formed with a primitive cubic
lattice of copper atoms which is centered by a disor-
dered sub-lattice of manganese and aluminum atoms [6].
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Cooling below 610 ◦C induces, moreover, order of the sub-
lattice of manganese and aluminum to L21 structure [7].
In non-stoichiometric alloys, order temperatures decrease
and the temperature range of annealing, where the al-
loy does not form micro-precipitates, becomes smaller
than that of the stoichiometric material [1, 8]. Oxley
found a value of 357 ◦C for the Curie temperature, be-
low which the alloy is ferromagnetic [9]. Neutron diffrac-
tion and other techniques have shown that a magnetic
moment of about 3.7 µB lies almost exclusively on man-
ganese atoms [10]. Since these atoms are separated by
4.2 Å, the exchange interaction, which aligns the spins,
is probably indirect and occurs via the conduction elec-
trons or the aluminum and copper atoms [9, 11]. Elec-
tron microscopic studies have shown that thermal anti-
phase boundaries (APBs) form during cooling through
order temperatures, since the ordered domains nucleate
in different centers within the crystal lattice and are of-
ten in phase where it meet [6]. The anti-phase domain
increases when the alloy is annealed. There are two types
of APBs corresponding to the B2 and L21 order types.
APBs also form between the dislocations if the alloy is
deformed. At the thermal anti-phase boundaries (APB),
the manganese atoms are closer than the mass of the al-
loy and, for non-stoichiometric alloys with an excess of
copper (e.g. Cu2.2MnAl0.8), an antiferromagnetic layer
forms on each thermal APB [12]. These antiferromag-
netic layers completely replace the normal structure of
the magnetic domain and remain with the APBs if they
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grow by annealing the alloy. This substantially modi-
fies the magnetic properties of the non-stoichiometric al-
loy with respect to the stoichiometric alloy which has a
normal domain structure. This phenomenon is proba-
bly related to the fact that pure manganese is antiferro-
magnetic although it is not clear why the effect was not
observed in the stoichiometric alloy.

Similar effects occur at APBs in the ferromagnetic
alloy MnAl in the stoichiometric composition [13, 14].
Another useful (interesting) Heusler alloy is the class of
materials known as ferromagnetic shape memory alloys.
These are generally composed of nickel, manganese, and
gallium and can change their length by up to 10% in a
magnetic field [15–17].

Electronics was a huge development in the last three
decades, but little attention has been given to the in-
clusion of magnetic materials in integrated electronic de-
vices [18, 19]. However, a new field of electronics and
spintronics has attracted widespread attention recently.
In the spintronic context, both the spins and the electri-
cal charge of electrons are controlled in the information
transfer operation in the circuits [20, 21].

For a long time, magnetic materials and semiconduc-
tors have been developed separately with magnetic ma-
terials mainly used for data storage such as in hard disc
drives in processors. It is a major challenge to integrate
the two classes of materials for the development of spin-
tronics devices.

Spintronics devices combine the advantages of mag-
netic materials and semiconductors to be multilateral,
fast and non-volatile. Currently, technological and in-
dustrial advances in various fields are highly depen-
dent on the advancement of research in the magnetic
materials field (new characteristics of materials must
be taken into account: spin polarization, conduction
band, polarized carrier symmetry, the magnetism of the
interfaces, etc.) [22–24].

One of the spintronics applications is the use of half-
metals. One of the main properties of these materials is
“half-metallicity”, that is, the conduction electrons are
99.2% spin-polarized due to a deviation at the Fermi
level [25]. This phenomenon stimulates a great interest in
the development of materials that possess this property; a
new class was predicted called ferromagnetic half-metals.
A promising class of these materials is the Heusler alloys
and more precisely that of the Mn-based ferrimagnetic
Heusler alloys which has received considerable attention
in theoretical studies [26–30].

In this work, we study the alloys Ti2PdX (X = Al, Ga,
and In) which is not yet synthesized. The study is car-
ried out using ab initio simulation, within the framework
of the density functional theory (DFT), at which we pro-
pose to perform the structural, electronic, and magnetic
properties. In addition, we present the theoretical study
of transport properties (of the compounds studied) cal-
culated using the Boltzmann theory implemented in the
BoltzTrap code [31]. In this work, we studied the struc-
tural, elastic, electronic, and magnetic properties of the

same materials studied by Berri et al. [32], but with the
spin–orbit coupling correction that is necessary for the
Pd, our results in particular the gaps and the polariza-
tion are much better improved compared to the results of
Berri et al. [32]. In addition, we have studied the elastic
and thermoelectric properties of the same materials that
have not been studied before to our knowledge.

2. Calculation method

We have calculated the structural, elastic, electronic,
magnetic, and thermoelectric properties of the full
Heusler alloy Ti2PdX (X = Al, Ga, and In) by us-
ing the first principle theory based on the full-potential,
linearized augmented plane wave method [33] in the
framework of the DFT [34, 35] as implemented in the
code WIEN2k [36]. The exchange and correlation en-
ergy is treated by the generalized gradient approximation
(GGA) [37] and the Boltzmann transport equation under
the constant relaxation time approximation (RTA) [38–
40], for charge carriers as implemented in the BoltzTrap
code [31]. Wave functions, electronic densities, and po-
tential are expanded in the basis of spherical harmonics
around atomic sites in muffin-tin spheres with a cut-off
`max = 12, while in the interstitial region, the set of ba-
sic function are taken as the Fourier series with a cut-off
RMTKmax = 8 (where RMT is the radius of the muffin-
tin sphere and Kmax is maximum wave vector for the
basis set of plane waves). Within this predictive calcu-
lation, it has been shown that our studied compounds
are ferromagnetic, with a total moment Mt = 3.00 µB.
As we know, in ab initio calculations the crystal struc-
ture is very necessary to predict the physical properties
of such material.

Our compounds belong to full Heusler family X2YZ
which crystallizes in the cubic phase of space group No.
225 (Fm-3m) or No. 216 (F -43m) whose atomic po-
sitions are shown in Fig. 1a and b. With an accu-
racy on the order of 10−4 Ry, the structural proper-
ties are achieved by sampling of the Brillouin zone grid
(14× 14× 14) with 120 special k-points in the first Bril-
louin zone. The used muffin-tin radii RMT , of the con-
stituent elements of the studied compounds, are reported
in Table I. The cutoff energy, which defines the sep-
aration between the core and valence states, is set to
−6.0 Ry. The relativistic effects are taken into account
by the use of the scalar relativistic approximation to cal-
culate the electronic states. For the electronic and mag-
netic calculations of the cubic Heuslers Ti2PdX (X=Al,
Ga, and In), we calculate the total and partial densities
of states as well as the band structure along different
directions of high symmetry using a grid (14 × 14 × 14)
with 120 special points corresponding to 3000 k-points in
the first Brillouin zone. As stated above, we used GGA
approximation instead of local-spin-density approxima-
tion (LSDA) since GGA gives more accurate results, es-
pecially for electronic properties, but unfortunately it
underestimates the gap [41], typically by 30 to 50%,
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Fig. 1. Atomic positions of Ti2PdX (X = Al, Ga, and
In): (a) CuHg2Mn-type L21 structure Ti(1) (0, 0, 0),
Ti(2) (1/4, 1/4, 1/4), Pd(1/2, 1/2, 1/2), and X (3/4,
3/4, 3/4), (b) CuHg2Mn-type L21 structure Ti (1/4,
1/4, 1/4), Pd (0, 0, 0) and X (1/2,1/2, 1/2).

without affecting the other electronic properties. This is
due to the fact that the exchange and exact-correlation
potentials, which are unknown, are discontinuous when
the system goes from N to N ± 1 particles [42, 43],
because DFT does not have an equivalent of Koop-
mans’ theorem for the Hartree–Fock method to calculate
E(N)−E(N ± 1) where E is the total energy of the sys-
tem [44]. This discontinuity of potential also exists for
hybrid functional systems (B3LYP, B3PW, etc.), based
in part on an exact exchange potential of the Hartree–
Fock type. But hybrid functional systems give gaps more
comparable to the experimental gaps than those provided
by LDA or GGA, through moving the whole conduction
band to the valence band. Some authors solve this prob-
lem by using an operator scissors; this amounts to mov-
ing toward the higher energies of the calculated conduc-
tion states by a quantity equal to the difference between
the experimental gap and the calculated gap. For our
part, we preferred to present our results as they were ob-
tained. Calculations are performed taking into account
the semi-core states due to the important overlap be-
tween these states and the valence states. For the band

structure calculations, the equilibrium lattice parameter
of each studied material is estimated. The space group of
our materials Ti2PdX (X = Al, Ga, and In) is Fm-3m.
As mentioned above, relativistic scalar approximation is
used for heavy atoms which have important electronic
charge. Finally, the spin–orbit coupling is not considered
since it affects slightly the results.

TABLE I

Muffin-tin radius RMT of the elements constituting
Ti2PdAl, Ti2PdGa and Ti2PdIn.

Alloys
RMT [Å]

Ti(1) Ti(2) Pd X
Ti2PdAl 2.31 2.31 2.46 2.20
Ti2PdGa 2.25 2.25 2.46 2.25
Ti2PdIn 2.37 2.37 2.46 2.43

3. Results and discussions

3.1. Structural properties

Figure 1a and b illustrates the two possible struc-
tures in which the full-Heusler alloys X2YZ crystallize:
the CuHg2Ti structure-type and the Cu2MnAl structure-
type. All our calculations are realized for the most stable
phase which can be found by performing structural op-
timization of both FM and PM phases of Ti2PdX (X =
Al, Ga, and In) in CuHg2Ti and Cu2MnAl structure-
type. The optimization consists in calculating the total
energy as a function of the volume of the unit cell. Af-
ter fitting the total energy to the equation of state of
Murnaghan [45], the obtained results are presented in
Fig. 2a and b where it can be clearly deduced that for all
the studied compounds, the FM phase is the most stable
with significantly smaller equilibrium energy than that of
the PM phase.

The equilibrium energy of the two both phases are also
determined and are listed in Table II. The formation en-
ergy indicates the stability of the alloys in regard of de-
composition into its bulk constituents. The formation
energy is calculated using the formula

Ef = Etotal
Ti2PdX − (2Ebulk

Ti + Ebulk
Pd + Ebulk

X )

where Ebulk
Ti , Ebulk

Pd and Ebulk
X (X = Al, Ga, and In), cor-

respond to the total energy per atom for Ti, Pd, and X
atoms, respectively, obtained by the same approximation

TABLE II

Representation of the total energy of the magnetic phase
No. 225 (Fm-3m) Cu2MnAl structure-type (A) and the
magnetic phase No. 216 (F -43m) CuHg2Ti structure-
type (B).

Phase
structure-type

Equilibrium energy [Ry]
Ti2PdAl Ti2PdGa Ti2PdIn

A −13985.507518 −17386.127261 −25262.064291

B −13985.536274 −17386.160584 −25262.084925
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Fig. 2. Calculated total energy vs. the unit cell volume
for the full-Heusler compound Ti2PdX (X = Al, Ga, and
In) with Hg2CuTi-type structure for FM.

used in the calculation of Etotal
Ti2PdX . We found that

the calculated formation energies are –1.66, –1.56, and
−1.47 Ry for Ti2PdAl, Ti2PdGa, and Ti2PdIn, respec-
tively, which indicates that the Ti2PdX (X=Al, Ga, and
In) alloys are thermodynamically stable due to their neg-
ative formation energies.

3.2. Elastic properties

It is well known that for cubic materials, three indepen-
dent elastic constants are needed to describe the crystal
elasticity: C11, C12, and C44. The elastic constants C11

and C12 are obtained by application of a stress tensor
with the orthorhombic volume retained. For the elastic
constant C44, a monoclinic stress tensor with a conserved
volume is used.

Another important elastic property is the elastic
anisotropy of a crystal which is evaluated by the so-called
the anisotropy factor. The former provides informa-
tion about eventual microcracks or other structural de-
faults appearing during the crystal growth process. The
anisotropy factor A unity for isotropic materials [46], is
the usual anisotropy factor given by

A =
2C44

C11 − C12
. (2)

The elastic anisotropy A∗ is given by [47]:

A∗ =
3 (A− 1)

2

3 (A− 1)
2

+ 25A
. (3)

A∗ have the following properties of practical importance:

1. A∗ is zero for the crystals of the elastic isotropy,
i.e., A = 1.

2. For an anisotropic crystal, A∗ is a single-valued
measure of the elastic anisotropy regardless of
whether A < 1 or A > 1.

3. A∗ gives a relative magnitude of the actual elastic
anisotropy possessed by a crystal.

4. The difference (A−1), whether positive or negative,
is a measure of the degree of elastic anisotropy of
the material.

The calculated structural and elastic properties for
Ti2PdX (X = Al, Ga, and In) compounds are summa-
rized in Table III with no experimental or other theoreti-
cal data. The conditions of mechanical stability for cubic
crystals should verify the obtained results of the elastic
constant and the bulk modulus: C11−C12 > 0, C11 > 0,
C44 > 0, C11 + 2C12 > 0, C12 < B < C11 [48, 49]. The
obtained results show that the FP-LAPW method is an
appropriate and efficient manner to investigate structural
and elastic properties.

TABLE III

Structural and elastic properties of Ti2PdX (X = Al, Ga,
and In) full Heusler: a — lattice constant, B0 — bulk
modulus, B′0 — pressure derivative bulk modulus, C11,
C12, and C44 — elastic constants, A — factor of elastic
anisotropy.

Parameters Ti2PdAl Ti2PdGa Ti2PdIn
a [Å] 6.2519 6.2235 6.4327

B0 [GPa] 140.4613 142.6656 134.8059
B′0 4.9116 4.5764 4.9345

C11 [GPa] 168.34255 193.85925 181.12660
C12 [GPa] 57.70325 126.45000 124.08065
C44 [GPa] 129.00050 55.95840 102.20975

A 2.331910994 1.660258792 3.583418279
A∗ 0.250958007 0.091639371 0.548013516

4. Electronic and magnetic properties

The plots of the spin-up and spin-down band structure
of Ti2PdX (X = Al, Ga, and In) full Heusler compounds
are presented in Fig. 3a–f. The band structures of our
compounds are similar in shape; all these compounds ex-
hibit a metallic behavior for the spin-up band structure,
since the conduction and valence bands overlap at the
level Fermi, while an indirect gap Γ −X is observed near
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Fig. 3. Band structures spin-up and spin-down of the
Ti2PdX (X = Al, Ga, and In).

the Fermi level for the spin-down band structure indi-
cating a semiconductor character of these compounds.
Thus, the Ti2PdX (X = Al, Ga, and In) compounds are
half-metallic.

To elucidate the band structures, we calculated the
partial and total densities of states for spin-up and spin-
down of Ti2PdX (X= Al, Ga, and In) compounds at
equilibrium lattice constant. The representative curves
of PDOS and DOS are shown in Figs. 4, 5, and 6. The
calculated total magnetic moment for Ti2PdX (X = Al,
Ga and In) compounds is 3.00 µB which agree with the
Slater–Pauling rule Mt = Zt − 24 and with the atomic
magnetic moment of Ti(1), Ti(2), Pd, Al, Ga, and In.
The effective magnetic moments, optimized energy are
tabulated in Table IV. The spin-up channel exhibits a
metallic character of the compounds since the DOS in-
tersects EF, while the spin-down channel shows a semi-
conductor nature with a weak indirect gap Γ → X of
0.45, 0.50, and 0.45 eV without spin–orbit coupling, while
with spin–orbit coupling the gaps are 0.44, 0.49, and 0.35
around the Fermi level for Ti2PdX (X = Al, Ga, and
In), respectively. This behavior leads to 99.1%, 99.3%,
and 99.4% carrier spin polarization at EF, giving rise to

half-metallic ferrimagnet compounds. From Figs. 4, 5,
and 6 we observe in spin-down group that the strongly
hybridized Pd–d and Ti(1)–d and Ti (2), states mainly
contribute in the valence band around the Fermi level
with sharp peaks at (6.06, 0.69, and 0.80 eV), (5.89, 0.54,
and 0.58 eV) and (7.60, 0.45, and 0.53 eV) for Ti2PdAl,
Ti2PdGa, and Ti2PdIn respectively. In spin-down chan-
nel, the conduction band is essentially composed of d
states of Ti atoms. In this region, peaks were observed
at (6.66 and 7.11 eV), (4.86 and 6.50 eV) and (5.73 and
7.85 eV), for Ti2PdAl, Ti2PdGa, and Ti2PdIn, respec-
tively. The DOS of Ti(1) and Ti(2) atoms is situated
principally above the Fermi level, in between −9 and
−7 eV and consists mainly of s states of X atoms.

Fig. 4. Total and partial states of density for both
spin-up and spin-down of Ti2PdAl.

To study the effect of the lattice parameter on the
half-metallicity, we performed electronic structure of
Ti2PdAl, Ti2PdGa and Ti2PdIn lattice parameter of
6.2519, 6.2235, and 6.4327 Å. From Table III, one sees
that, when increasing the lattice constant, the Fermi level
moves toward the conduction band and move to the va-
lence band by decreasing the lattice constant. Therefore
the half-metallic nature of Ti2PdX (X = Al, Ga, and
In) is conserved under compression or expansion. Fig-
ure 5 shows the magnetic moments of the Ti(1), Ti(2)
and Pd atoms as a function of the lattice constant. Local
moments can undergo important changes, but the total
moment remains constant and equals 3.00 µB, since Ef

stays within the gap.
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Fig. 5. As in Fig. 4, but for Ti2PdGa. Fig. 6. As in Fig. 4, but for Ti2PdIn.

TABLE IV

Total and partial magnetic moments of Ti2PdX (X = Al, Ga, and In) Heusler compounds at equilibrium, and indirect
gap around Fermi level.

Compounds µinterstitial [µB] µ1Ti [µB] µ2Ti [µB] µPd [µB] µX [µB] µtot [µB] Eg [eV]
Ti2PdAl 0.55312 1.44316 0.90727 0.09432 0.00250 3.00037 0.45
Ti2PdGa 0.56176 1.40008 0.92193 0.11475 0.00191 3.00043 0.50
Ti2PdIn 0.54329 1.40011 0.93773 0.10909 0.01055 3.00077 0.45

5. Thermoelectric properties

5.1. Thermoelectric properties as a function
of the chemical potential

To our knowledge, this is the first study to investigate
the thermoelectric properties of Ti2PdAl, Ti2PdGa, and
Ti2PdIn full Heusler compounds. The performance of a
thermoelectric material can be predicted by the value of
its figure of merit (ZT), which is related to the Seebeck
coefficient, the electrical conductivity and the thermal
conductivity by the relationship ZT = σS2T/κ, where S
is the Seebeck coefficient, σ is the electrical conductivity,
T is the temperature and κ is the thermal conductiv-
ity. It is established that materials having ZT greater or

equal to unity are considered as excellent candidates for
thermoelectric applications [50, 51]. Figure 6a–c shows
the variation of ZT with respect to the chemical poten-
tial of Ti2PdA1, Ti2PdGa, and Ti2PdIn, respectively.
ZT shows approximately the same behavior for these
materials. For all compounds, ZT is clearly very
close to the unity at room temperature. ZT increases
sharply with the chemical potential and it reaches
the maximum values at chemical potentials of −0.1
and 0.1 µeV to which correspond maximum values
of the Seebeck coefficient and minimum ones of the
thermal conductivity. Beyond these points, ZT de-
creases rapidly due to the sharp increase of the thermal
conductivity.
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Fig. 7. The domain of half-metallic of Ti2PdX.

Figure 7a–c illustrates the variation of the Seebeck
coefficient of the studied materials Ti2PdAl, Ti2PdGa,
and Ti2PdIn respectively, as function of the chemical
potential at temperatures of 300, 600, and 800 K. We
note that the Seebeck coefficient has the maximum val-
ues of 953.5, 1014, and 855 µV/K at room tempera-
ture for Ti2PdAl, Ti2PdGa, and Ti2PdIn compounds,
respectively. This indicates that our compounds are
good thermoelectric materials. The chemical poten-
tial values which separate the p and n-types materials
are 0.12, 0.02, and 0.11 for Ti2PdAl, Ti2PdGa, and
Ti2PdIn, respectively. The Seebeck coefficient curve is
characterized by the existence of two peaks in the chem-
ical potential (−1.0, 0.5), (−1, 0.2) and (–1.0, 0.25) µeV,
for Ti2PdAl, Ti2PdGa, and Ti2PdIn compounds, respec-
tively, while beyond these ranges, the Seebeck coefficient
vanishes rapidly. However, we expect that the com-

pounds Ti2PdAl, Ti2PdGa, and Ti2PdIn have good ther-
moelectric properties in their chemical potential ranges.

The electrical conductivity relative (σ/τ) of the
Ti2PdAl, Ti2PdGa, and Ti2PdIn compounds is calcu-
lated as function of chemical potential. The obtained
results are displayed in Fig. 8a–c. We can see obvi-
ously that the electrical conductivity has the same fea-
ture at temperatures 300, 600, and 800 K for all com-
pounds. The electrical conductivity is almost zero in
the chemical potential ranges of (−0.24, 0.30), (−0.3,
0.3) and (−0.23, 0.27) µeV for Ti2PdAl, Ti2PdGa,
and Ti2PdIn compounds, respectively. These ranges
are all located in the middle of the chemical poten-
tial domains, mentioned above where the two Seebeck
peaks are located, for all studied compounds. For p-
type materials, the electrical conductivity reaches its
maximum values at the chemical potential values of
−1.26, −1.40, and −1.31 for Ti2PdAl, Ti2PdGa, and
Ti2PdIn respectively, at 300 K, whereas for n-type ones,
the maximum electrical conductivity values are found
at 1.48, 1.49, and 1.37 for Ti2PdAl, Ti2PdGa, and
Ti2PdIn, respectively. At these chemical potential ener-
gies, for both n and p-type materials, we observe that
the electrical conductivity decreases with the increase
of temperature.

The electronic thermal conductivity κ/τ versus the
chemical potential is calculated independent of the re-
laxation time τ by mean of the BoltzTraP code. Fig-
ure 9a–c depicts thermal conductivity versus chemical
potential for the Ti2PdAl, Ti2PdGa, and Ti2PdIn com-
pounds, respectively. From these figures, we can observe
that the electronic thermal conductivity increases with
respect to the temperature. The obtained value of the
electronic thermal conductivity for Ti2PdAl, Ti2PdGa,
and Ti2PdIn compounds is about 75 × 1014 W/(m K)
at 800 K.

Fig. 8. ZT vs. chemical potential for Ti2PdX.
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Fig. 9. Seebeck coefficients for (a) Ti2PdAl, (b) Ti2PdGa and (c) Ti2PdIn at 300, 600 and 800 K.

Fig. 10. Electrical conductivities of Ti2PdX as a function of chemical potential at 300, 600, and 800 K.

5.2. Thermoelectric properties
as a function of the temperature

To study the thermoelectric properties of the full-
Heusler compounds Ti2PdX (X = Al, Ga, and In),
we used the Boltzmann semi-classical transport theory,
based on the Fourier bands interpolation, implemented
in the BoltzTraP code. The Seebeck coefficient S, the
electrical conductivity σ/τ and the thermal conductiv-
ity (κ/τ) are calculated as a function of temperature (at
EF = EF0, EF0 is the Fermi energy at T = 0 K for the
studied compounds. We have predicted above that our
studied compounds are magnetic materials, so we can use
the two-stream model [52, 53] in which the Seebeck coef-
ficient can be expressed as

S = {[S (↑)× σ (↑) + S (↓)× σ (↓)] / [σ (↑) + σ (↓)]} ,

where Sσ(↑) and σ(↓) are the Seebeck coefficients and
the electrical conductivity respectively for both spin-up

(↑) and spin down (↓). In addition, it is important to
note that the value of S for semiconductors is about 100
times greater than that of metals [54]. It is known that
the studied compounds Ti2PdX (X = Al, Ga, and In)
are not pure semiconductors, but they exhibit a half-
metallic behavior. In the following, we will consider only
the spin-down states witch correspond to the semicon-
ductor character of the materials. The Seebeck coeffi-
cient, which connects thermal and electrical conductiv-
ity, is an important thermoelectric property to estimate
thermoelectric performances [55] of materials.

Figure 10 shows the temperature dependence of the
thermoelectric coefficients of the full-Heusler compounds
Ti2PdAl, Ti2PdGa, and Ti2PdIn for the spin down
states. It is seen that the absolute values of the Seebeck
coefficient of the three compounds increase with the de-
crease of the temperature. Among the three studied com-
pounds, Ti2PdAl shows the highest Seebeck coefficient
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Fig. 11. Thermal conductivities of Ti2PdX as a function of chemical potential.

Fig. 12. Calculated Seebeck coefficient of Ti2PdX as a
function of temperature.

Fig. 13. Calculated electrical conductivity of Ti2PdX
as a function of temperature.

Fig. 14. Calculated thermal conductivity of Ti2PdX as
a function of temperature.

along the whole temperature scale. Thermal conduc-
tivities of Ti2PdX (X = Al, Ga, and In) as a func-
tion of chemical potential at 300, 600 and 800 K have
been presented in Fig. 11. The electrical conductivities
σ(↓)/τ(↓) of the Ti2PdX compound as a function of tem-
perature, for the spin down, are plotted in Fig. 12, at the
Fermi level. The electronic conductivity σ/τ slightly in
creases with respect to the temperature down to 300 K.
The values of σ(↓)/τ(↓) at room temperature are found
to be approximately 0.5427 × 1020, 1.2284 × 1020, and
1.7 × 1020 Ω−1 m−1 S−1 for Ti2PdA1, Ti2PdGa, and
Ti2PdIn, respectively.

In Fig. 13 at the Fermi level, we notice that the See-
beck coe?cient presents almost the same behavior for
the all compounds with maximum values of 2824.38,
2842.65, and 2511.73 µV/K at the temperature of 100 K
for the full-Heusler compounds Ti2PdA1, Ti2PdGa, and
Ti2PdIn, respectively.
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In Fig. 14, we plotted the variation of the electronic
thermal conductivity κ/τ with the temperature for the
spin-down. We note that κ/τ increases slightly with in-
crease of the temperature and takes the values of 8.30,
11.55, and 15.11 (1010 W/(m K)) at room temperature
for Ti2PdAl, Ti2PdGa, and Ti2PdIn, respectively.

6. Conclusion

The electronic, magnetic, and thermoelectric proper-
ties of Ti2PdX (X = Al, Ga, and In) have been studied
by combining the study of the electronic structures cal-
culated from the first-principle methods with the Boltz-
mann transport theory. The density of states of para-
magnetic and ferromagnetic states, electronic band struc-
tures, and total energy calculations clearly suggest the
semi-metallic ferromagnetic ground state for these com-
pounds. The band gap is indirect and lies between the
points Γ and X, its value is 0.45, 0.50, and 0.45 eV
for Ti2PdA1, Ti2PdGa, and Ti2PdIn spin-down semi-
conductors (SC), respectively. The total magnetic mo-
ment obtained from the calculations is 3.00 µB per for-
mula unit. The integral value of the magnetic moment
confirms the semi-metallic ground state for spin-down.
Our study of the thermoelectric is limited to SC spin-
down. Our materials can be used in spintronics and ther-
moelectric fields.
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