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Diffusion and Brownian Motion: On the Possibility
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In this paper, we discuss several problems for the diffusion equation taking into account an external force
(the Smoluchowski equation). Using the fundamental solution of the free diffusion equation, the Smoluchowski
equation is solved in the presence of the small gradient force induced by an interference field of two laser beams.
The fundamental solution is obtained for the diffusion equation in the presence of a constant external force, which is
a gradient of a linear potential; this equation describes the process of distribution over the whole volume of particles
initially concentrated in a small spatial domain. We study kinetics of the concentration gratings of transparent
microspheres in a liquid induced by the gradient force in the interference field of laser radiation.
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1. Introduction

Manipulation of small particle motion and localization
with the light pressure forces generated by laser radiation
is currently one of the most interesting problems lying
at the interfaces between electrodynamics, optics, me-
chanics, and quantum electronics. The relevance of this
problem is mainly due to many possible applications, es-
pecially in medicine and biology. Thus, the apparatus for
laser transportation and confinement of dielectric parti-
cles was first demonstrated in 1986 [1, 2]. A year later,
using a beam of IR laser radiation, the same group suc-
ceeded in transportation of a living cell without any dam-
age [3]. The device, which gives the possibility of nonde-
structive transportation of small dielectric particles and
biological objects with laser radiation, was called “laser
tweezers”. At present, laser tweezers are widely used in
biology and medicine for study of viruses and bacteria [4],
DNA molecules [5], processes inside living cells [6], etc.

Apart from biological and medical applications, light
pressure can be used to write concentration gratings in
liquid suspensions of dielectric particles with controllable
optical properties. Such artificial heterogeneous media
are shown to have large values of optical Kerr coeffi-
cient and can find applications as wideband nonlinear
media for laser radiation of low intensity and large pulse
duration [7, 8].

2. The main equation

To study the processes of displacement and localiza-
tion of small particles, one can use the diffusion equation
that takes into account the presence of an external force
(the Smoluchowski equation). When an external field is
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imposed, the change in particle velocity is proportional
to the force, with a proportionality coefficient b, which is
called particle mobility [9–11]. Then, the diffusion equa-
tion with a term for the external force Fi can be written
as follows:

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2i
− ∂ [n(x, t)bFi]

∂xi
. (1)

Here n(x, t) = Nf(x, t) is the concentration of particles,
f(x, t) — the distribution function, D— the diffusion co-
efficient, and N — the total number of particles. Equa-
tion (1) can be regarded as the conservation law for the
number of suspended particles in a differential form

∂n(x, t)

∂t
= −∂ji(x, t)

∂xi
, (2)

where ji(x, t) = NJi(x, t) is the particle flux density
(i = 1, 2, 3).

In general, the existence of a flux of diffusing parti-
cles can also be due to the presence of temperature and
pressure gradients [8]. However, since the medium is as-
sumed to be in thermodynamic equilibrium, the temper-
ature gradient is absent. The pressure gradient can be
caused, for example, by an external force Fi. In the pres-
ence of external force, the expression for the particle flux
density takes the form [9]:

ji(x) = −D∂n(x, t)

∂xi
+ n(x, t)bFi. (3)

Here we take into account that the particle flux density
is the product of the particle density by the velocity. The
integral form of the conservation law for the number of
particles is∫

n(x, t)d3x = N

∫
f(x, t)d3x = 1. (4)

Note that the force should be a slow function of coor-
dinates, i.e. the linear dimensions of the region of force
variation should significantly exceed the mean free path
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of diffusing particles [10]. In Refs. [10, 12], the deriva-
tion of the diffusion equation is given on the basis of
stochastic models. This, in particular, makes it possible
to establish the connection between the diffusion equa-
tion and the telegraph equation. Further in this paper
we use Eq. (1).

3. Diffusion and Brownian motion

A. Einstein derived the diffusion equation without tak-
ing into account the effect of force on particles of a sub-
stance dissolved in some liquid or a substance in the
gaseous state introduced into another gas [13]. It was
assumed that the physical cause for spreading the solute
over the entire volume of the solvent is the Brownian
motion, i.e. occasional kicks from the molecules of the
solvent (or the gas into which the molecules of another
gas were inserted) that the molecules of the solute or
the particles of the suspension experience. As is known,
A. Einstein and M. Smoluchowski, who used the integral
equation, were the founders of the theory of Brownian
motion as a theory of random processes [14].

The historical analysis of the influence of Smolu-
chowski’s ideas on the development of kinetic theory as
well as the origin of fundamental equations used in the
mathematical description of stochastic processes is given
in the work [15]. However, we would like to single out the
Wiener contribution which have been developed in 1920
as the theory of functions describing the trajectories of
Brownian particles. A characteristic feature of such func-
tions is their continuity and non-differentiability in the
entire domain of definition. However, one can calculate
an integral for them. The construction of the integral
for functions describing Brownian trajectories is called
the Wiener measure and lies at the basis of the Feynman
path integral formulation of quantum mechanics [16], as
well as the basis of the quantum field theory formulation
in terms of functional integration [17]. The connection
between statistical physics and quantum theory in this
latter approach is manifested in the fact that one can pass
from quantum theory to statistical physics using the for-
mal method called the Wick rotation of the real time axis
in the complex plane by π/2, which implies the transition
to the imaginary time in the corresponding functionals of
the quantum theory. The basis for such a procedure is
the possibility of analytic continuation of some basic ex-
pressions used in quantum field theory to the complex
domain. This possibility is one of the most important
results of axiomatic quantum field theory.

4. The fundamental solution
of the diffusion equation

Let us consider the redistribution over the whole vol-
ume for particles initially concentrated in a small volume
near the point x0, when the process is affected by an
external constant force. We should solve the modified
Eq. (1) with a delta-like source

∂G(x− x0, t− t0)

∂t
−D∂

2G(x− x0, t− t0)

∂x2

+
∂[G(x− x0, t− t0)bF ]

∂x
= δ(x− x0)δ(t− t0). (5)

To solve this equation, we use the standard method which
emphasizes the closeness of the methods of diffusion the-
ory and quantum mechanics. Application of this method
to the diffusion equation has a certain methodological ad-
vantage related to the uniqueness of the solution choice,
in contrast to the case of quantum mechanics. We repre-
sent the function G and the delta functions in the right-
hand side of the equation in the form of the Fourier
integrals

G(x− x0, t− t0) = (6)∫
G(k, ω) exp(i [ω(t− t0)− k(x− x0)])

d3k

(2π)3
dω

2π
,

δ(x− x0)δ(t− t0) =∫
exp(i[ω(t− t0)− k(x− x0)])

d3k

(2π)3
dω

2π
. (7)

Substituting these expressions into Eq. (5), we obtain the
algebraic equation

(iω +Dk2 − ibk · F )G(k, ω) = 1, (8)
which results in

G(k, ω) =
1

iω +Dk2 − ibk · F
. (9)

We substitute expression (9) into Eq. (6) and perform
integration with respect to ω. In order to do this, we
continue ω to the upper part of the complex plane, i.e. ω
is regarded as a complex variable with a positive imagi-
nary part. This is possible, because the integrand in the
expression

G(x− x0, t− t0) = (10)∫
− i exp(i [ω(t− t0)− k(x− x0)])

ω − iDk2 + bk · F
d3k

(2π)3
dω

2π

is an exponentially decreasing function, and therefore the
line, along which the integration is performed and which
initially coincides with the real axis in the complex ω
plane, can be completed (closed) in the upper half-plane
by a circle of infinitely large radius. The integral in
this case will be equal to the pole residue at the point
ω = iDk2 − bk · F . The pole is in the upper half-plane,
since D is positive. Thus, after integration with respect
to ω, we have the integral

G(x− x0, t− t0) =∫
exp((ibk · F −Dk2)(t− t0))

× exp(− ik(x− x0))
d3k

(2π)3
, (11)

which is the three-dimensional Fourier transform of the
function exp((ibk · F − Dk2)(t − t0)). This integral is
easily converted to the standard one. Indeed, factorizing
D(t− t0) and finding the perfect square in the exponent,
we obtain
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G(x− x0, t− t0) =

exp

(
−b

2F 2(t− t0)

4D
+
bF · (x− x0)

2D

)
(12)

×
∫

exp(−Dk′2(t− t0)) exp(− ik′(x− x0))
d3k′

(2π)3
,

where k′ = k − ibF /2D is the shifted argument. After
integration we come to the expression

G(x− x0, t− t0) =
1

[4πD(t− t0)]3/2
(13)

× exp

(
−b

2F 2(t−t0)

4D
+
bF · (x−x0)

2D
− (x−x0)2

4D(t−t0)

)
.

It is obvious that for F = 0, Eq. (13) as expected passes
into the solution of the corresponding equation, not tak-
ing into account the presence of an external force.

Formula (13) can be rewritten in a compact form con-
venient for calculating the average values

G(x− x0, t− t0) = (14)
1

[4πD(t− t0)]3/2
exp

(
− (x− x0 − bF (t− t0))2

4D(t− t0)

)
.

The mean-square deviation calculated using the distribu-
tions (13) or (14) is given by the formula〈

(x− x0)2
〉

= 2D(t− t0) + b2F 2(t− t0)2. (15)
Using Eq. (15), one can estimate the effect of a con-
stant external force on redistribution of particles initially
concentrated in a small volume. First of all, it should
be noted that the second term in the right-hand side
of Eq. (15) is always positive and, hence, the external
force always accelerates redistribution of particles over
the volume. Further, taking into account the relation
b = D/kBT , where kB is the Boltzmann constant and
T — the medium temperature, and assuming that the
second term has significant influence when it is compa-
rable to the first one, the required magnitude of force
can be estimated as F ∼ kBT/

√
D(t− t0). It is seen

from this formula that for inorganic molecules of the
mass m ≈ 10−24 g, diffusion coefficient D ≈ 10−6 m2/s,
and room temperature 300 K, the characteristic time of
particle redistribution should be δt = t − t0 ≈ 1 s for
the influence of constant gravity to be significant. Ob-
viously, these times should be several orders of magni-
tude less for organic molecules, which have much greater
masses. Equation (15) can play an important role in an
experimental investigation of external force influence on
diffusion processes. This formula was first derived by
Smoluchowski [14], who used the method different from
reported here.

5. Concentration nonlinearity of a liquid
suspension of transparent microspheres

In this section, starting from the one-dimensional
Smoluchowski equation, we develop the theory of con-
centration nonlinearity of a liquid suspension of trans-
parent microspheres under the action of a gradient force

in the interference field of laser radiation. Although each
of the suspension components (microspheres and liquid)
does not exhibit nonlinearity, such an artificially created
heterogeneous medium is a highly effective broadband
nonlinear material for continuous laser radiation [7, 8].
In the experimental study of four-wave mixing (FWM)
of Ar-laser radiation (λ = 5145 Å) in the suspension of
latex microspheres of radius R = 1.17 µm with concen-
tration N0 = 6.5 × 1010 cm−3, the optical Kerr coeffi-
cient was measured to be n2 = 3.6 × 10−9 cm2/W [7],
which is 105 times greater than in carbon disulfide. In
this case, the formation time tF and the decay time tD
of the concentration gratings responsible for the FWM
were tF = 320 ms (at the pumping power of ≈ 100 mW)
and tD = 200 ms, respectively. The large value of nonlin-
ear response time corresponds to the general regularity
characteristic for nonlinear media — the linear depen-
dence of the response time on the optical Kerr coeffi-
cient n2 (see, e.g., [18]). The theory of FWM and stim-
ulated concentration scattering in the aqueous suspen-
sion of transparent microspheres was developed in [8, 19]
and [20], respectively. Stimulated Raman scattering in
aqueous suspensions of diamond nanoparticles aggregates
and monodisperse latex spheres was experimentally in-
vestigated in [21].

Fig. 1. Scheme of formation of the concentration
grating.

We consider the concentration nonlinearity of a sus-
pension of transparent microspheres under the action of
a gradient force F∇ in the field of two coherent waves of
equal amplitude that converge at an angle Θ with the
normal to the cell boundary (Fig. 1). Radiation inten-
sity in the cell with the suspension has a form

I(z, t) = I0(t)
[
1 + cos

(
2π

z

Λ

)]
, (16)

where Λ = π/k sinΘ is the modulation period and k —
the wave number. Intensity I0(t) is taken to be a square
pulse of duration τp:

I0(t) = I0[Θ(t)−Θ(t− τp)], (17)
where I0 = const, t ≥ 0.
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To describe the evolution of the microspheres con-
centration N(z, t), we use the one-dimensional Smolu-
chowski equation

∂N

∂t
= D

[
∂2N

∂z2
− 1

kBT

(
N
∂F∇
∂z

+ F∇
∂N

∂z

)]
. (18)

In the Rayleigh–Gans approximation [22] and taking into
account radiation inhomogeneity (16) in the microsphere
volume V = 4πR3/3, the gradient force in Eq. (18) is
given by [8, 23]:

F∇ = 2π
n

c
αI(t)

1

V

∫
V

∇ cos
(

2π
z

Λ

)
dV, (19)

where

α = R3 m̄
2 − 1

m̄2 + 2
(20)

is the microsphere polarizability and m̄ = n0/n is the ra-
tio of the refractive index of the microsphere material n0
to the refractive index of the liquid n at the wavelength
λ (further, for definiteness, we assume α > 0). After in-
tegration in Eq. (19), we have

F∇ = −4π2n

c

α

Λ
I(t)U(Ω) sin

(
2π

z

Λ

)
≡

−F0 sin
(

2π
z

Λ

)
, (21)

where

U(Ω) = 3

√
π

2
Ω−3/2J3/2(Ω) (22)

is a function, which describes radiation inhomogeneity in
the microsphere volume; J3/2(Ω) is the Bessel function
of the order 3/2, and Ω = 2πR/Λ(Θ).

Figure 2 shows the angular dependence of the func-
tion U(Θ) for different values of microsphere radius R.
It is seen that the inhomogeneity of radiation intensity in
the microsphere volume governed by the relation R/Λ(Θ)
results in decrease of the gradient force amplitude F0

(Θ = π/2 corresponds to counterpropagating waves, i.e.
minimal modulation period Λ = π/k). Since the function
U(Ω ∼ J3/2(Ω) is sign-changing, F0(Ω) changes sign at

Fig. 2. The angular dependence of the function U(Θ)
for different values of R.

certain values of Ω and, hence, microspheres with α > 0
can be localized in the nodes of the field interference pat-
tern. At Ω = Ωi (where Ωi are the roots of the Bessel
function, i = 1, 2, 3 . . .), the gradient force F0(Ωi) = 0
irrespective of the microsphere position. The so-called
“zero-force effect” [8] is due to the balance between force
components acting on the corresponding elements of mi-
crosphere volume in the region where the particle over-
laps two adjacent maxima (antinodes) of the interference
pattern. In particular, for the first root of the Bessel func-
tion J3/2(Ω1 = 4.493) = 0, the “zero-force effect” is ob-
tained at R/Λ(Θ) = 0.3576. In the region Ω1 < Ω < Ω2,
F0 < 0 and, consequently, the microsphere behaves like a
particle with α < 0. Estimates show that the condition
for the “zero-force effect” in the Rayleigh–Gans approxi-
mation used here can be realized for |m̄− 1| � 1.

Using the well-known relation

J3/2(Ω) =

√
2

πΩ

(
sinΩ

Ω
− cosΩ

)
, (23)

assuming Ω � 1 and leaving the first nonvanishing cor-
rection, one can show that

U(Ω) ≈ 1− Ω2

10
. (24)

It is obvious that the influence of the radiation inhomo-
geneity in the microsphere volume can be neglected only
at R/Λ� 1.

Introducing the variable ξ = 2πz/Λ, Eq. (18) can
be rewritten for the function N̄(ξ, t) = N(ξ, t)/N0 as
follows:

∂N̄

∂t
= (25)(
2π

Λ

)2

D0
∂2N̄

∂ξ2
+

F0

3ΛRη

(
N̄ cos ξ +

∂N

∂ξ
sin ξ

)
.

We seek a solution of Eq. (25) in the form of an
expansion

N̄(ξ, t) =

∞∑
κ=−∞

N̄κ(t)e iκξ, (26)

where the Hermitian condition N̄κ = N̄∗−κ is satisfied.
Using Eq. (26), Eq. (25) is reduced to the infinite system
of ordinary recurrent equations

dN̄κ
dt

= −N̄κ
tκ

+ κ
F0

6ΛRη

(
N̄κ−1 − N̄κ+1

)
(27)

with the initial conditions N̄0(t = 0) = 1 and N̄κ6=0(t =

0) = 0, where tκ = 3Λ2Rη/2πκ2kBT is the diffusion de-
cay time of the κ-th harmonic. It is obvious from Eq. (27)
that even and odd harmonics are connected to each other.
Since the amplitudes N̄κ(t) are real, it suffices to consider
only positive values of κ (κ = 1, 2, 3 . . .).

Taking Eq. (26) into account, the solution of Eq. (25)
is given by

N(z, t) = N0

[
1 + 2

∞∑
κ=1

N̄κ(t) cos
(

2πκ
z

Λ

)]
. (28)

For numerical calculations, Eqs. (27) can be rewritten in
a convenient form
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dN̄κ
dτ

= −κ2N̄κ + κG0

(
N̄κ−1 − N̄κ+1

)
,

κ = 1, 2, 3 . . . , (29)
where G0 = F0Λ/4πkBT and τ = t/t1. Note that the
coefficient G0 does not depend on Λ in the case Ω � 1,
when F0 ∼ 1/Λ.

In the steady state (at τ � 1), Eqs. (29) lead to the
system of algebraic equations

N̄κ =
G0

κ

(
N̄κ−1 − N̄κ+1

)
. (30)

In this case, the amplitudes of harmonics decrease with
increasing κ and simultaneously their coupling to neigh-
boring harmonics gets weaker. For G0 < 1, one can de-
duce from Eqs. (28) and (30) that

N(z) ≈ N0

[
1 + 2

∞∑
κ=1

Gκ0
κ!

cos
(

2πκ
z

Λ

)]
. (31)

Figure 3 shows the results of numerical calculation (from
the system (29)) of the maximal concentration response
∆̄N̄(τ) = 2

∑∞
κ=1 N̄κ(τ) in the antinodes of the inter-

ference pattern, i.e. when cos (2πκz/) = 1, for different
values of the coefficient G0 at Λ(Θ = π/2) = π/κ. Using
these numerical solutions and the exponential approxi-
mation

∆̄N̄(t) = ∆̄N̄0

(
1− e−t/tF

)
, (32)

where tF is the formation time of the concentration grat-
ing, we obtain the dependence of tF on the coefficient
G0 ∼ I0 (Fig. 4). Figure 4 shows that the time tF de-
creases with increasing intensity I0 and, hence, tF → t1
with decreasing I0. It is also worth noting that in gen-
eral, decrease of the formation time tF with the external
force (G0 ∼ F0) results from Eq. (15). This dependence
was observed in experimental study of FWM in the water
suspension of latex microspheres [7].

Fig. 3. Temporal dynamics of the concentration re-
sponse at Λ = π/κ for different values of G0: 1 — 0.1,
2 — 0.5, 3 — 1, 4 — 2, 5 — 5.

Fig. 4. Dependence of the normalized time τF = tF /t1
on the coefficient G0.

In the diffusion limit, G0 << 1 [8], when a single
harmonic N̄1(t) is enough to be considered, Eq. (29) re-
sults in

N̄1(t) = G0

(
1− e−t/t0

)
, (33)

where t0 = tF = t1. In this case, Eq. (29) has the form

N(z, t) = N0

[
1 + 2G0

(
1− e−t/t0

)
cos
(

2π
z

Λ

)]
. (34)

Estimates show that formula (34) is valid for the liquid
suspension of latex microspheres with R ≈ 10−5 cm at
I0 < 102 W/cm2. After “switching off” the radiation,
relaxation of the main grating is described by

N̄1(t) = 2G0

(
1− e−τp/t0

)
e−(t−τp)/t0

for t ≥ τp. (35)
To analyze the properties of the concentration grating
(34), let us consider the Raman–Nath diffraction of a
weak probe wave during grating excitation and relax-
ation. In this case, using Eq. (34) and the expres-
sion for the polarization of the diffracting weak wave
Ec exp(i(kc · r − ωt)):

Pc = [ε0 + αN(z, t)]Ec e− i (ωt−kc·r), (36)
one can find an equation for the amplitude Ec:

cos Θc
∂Ec
∂x

= i
ω

c
n02

(
1− e−t/t0

)
I0 cos

(
2π

z

Λ

)
Ec,(37)

where ε0 is the dielectric permittivity of the liquid, Θc
the angle between the vector kc and the normal to the
suspension layer,

n02 = (2πα)
2
N0

U(Ω)

ckBT
(38)

the optical Kerr coefficient, which generally depends not
only on the suspension parameters (α, N0, T ), but also
on the radiation modulation period Λ. Note that for
U(Ω) ≈ 1, the coefficient n02 > 0 regardless of the sign of
α and is determined only by the parameters of the sus-
pension, analogous to media with a cubic nonlinearity.
For the latex microspheres in water at room temperature
under the action of Ar-laser radiation (λ0 = 5145 Å)
and for the parameters of the experiment reported in
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Ref. [7] (N0 = 6.5 × 1010 cm−3, n0 = 1.59, n = 1.33,
R = 1.17× 10−5 cm, kBT = 4.05× 10−14 erg), we obtain
from Eq. (23) at U(Ω) ≈ 1 that n02 = 8.5×10−10 cm2/W.
This value is 2.8 × 104 times greater than n02 of carbon
disulfide, which is n02(CS2) = 3 × 10−14 cm2/W. The
value n02 experimentally measured in the study of the
concentration FWM is n02 = 3.6× 10−9 cm2/W [7]. This
difference in the values of the Kerr coefficient is probably
due to the use of the plane-wave approximation. For the
parameters given above and for Λ = π/k and η = 10−2 P,
we have t1 = 0.5× 10−3 s.

Using the solution of Eq. (37):
Ec(L) = Ec(0) · e iδ(t) cos(2πz/L) (39)

and the well-known relation

e iδ sin(2πz/L) =

∞∑
m=−∞

Jm(δ)e im2πz/L,

the efficiency of the m-th order diffraction can be written
as (see, e.g., [24])

ηm = J2
m(δ), (40)

where δ(t) = ω
c n

0
2(1 − e−t/t0)I0(t)L/ cosΘc and L is

the thickness of the suspension layer. Direction of the
diffraction maxima can be determined by the grating
equation [18]:

cosΘm = m
λ

Λ
+ cosΘc, m = 0,±1,±2 . . . (41)

Note that from the identity
∑∞
m=0 J

2
m = 1 follows the

law of energy conservation for the diffracting wave.
Using the diffraction efficiency ηm, it is possible to ex-

perimentally measure the formation and decay time of
the concentration grating as a function of the period Λ
and optical Kerr coefficient. In the case of large intensity
I0 (at G0 ≥ 1), one can also measure the dependence of
nonlinearity response time on the modulation period Λ
and radiation intensity.

6. Conclusion

In this paper, a number of problems were solved for
the diffusion equation taking into account the presence
of an external force (the Smoluchowski equation). Our
goal is to develop an approach for theoretical estimate
of the effect of external forces (predominantly gradient
by nature) on the diffusion of particles in a liquid. The
method of fundamental solution was used to solve these
equations. The advantage of this method is that the
fundamental solution has the direct physical meaning,
namely, it is proportional to the distribution of diffusing
particles. This feature is especially pronounced when
solving the diffusion equation that takes into account
the constant external force. As for the problem of the
concentration response dynamics of particles under the
influence of the gradient force induced by the interference
field of two laser light beams, we have used the decompo-
sition of the nonequilibrium concentration of particles by
trigonometric functions. It is also shown that the solution

of the diffusion equation taking into account the external
force corresponds to the equilibrium (Boltzmann) dis-
tribution and describes the steady-state concentration
grating.
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