
Vol. 135 (2019) ACTA PHYSICA POLONICA A No. 2

Proceedings of XIX International Scientific Conference “New Technologies and Achievements in Metallurgy,
Material Engineering, Production Engineering and Physics”, Częstochowa, Poland, June 7–8, 2018

Properties of the Superconducting State in Hexagonal BaSn5

M.W. Jarosika,∗, A.D. Woźniaka, M. Kostrzewab, K.P. Kosk-Joniecb

and M. Adamczyka

aInstitute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
bInstitute of Physics, Jan Długosz University in Częstochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland

The thermodynamic properties of the superconducting state in hexagonal BaSn5 superconductor have been
investigated. It has been shown that: (i) the critical value of the Coulomb pseudopotential is equal to 0.152;
(ii) the dimensionless ratios: 2∆ (0) /kBTC, ∆C (TC) /CN (TC) and TCC

N (TC) /H2
C (0) are equal to: 3.88, 1.78,

and 0.151, respectively; (iii) the ratio of the effective to bare electron mass reaches maximum of 1.96 for T = TC.
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1. Introduction

Although there are confirmed reports about supercon-
ductivity in sulfur hydrides near 200 K [1] the necessity
to maintain very high pressure excludes the possibility of
practical use of this superconductor at the moment. Use
of cuprates is also complicated due to their mechanical
properties, especially brittleness [2]. Thus, intermetal-
lic superconductors are commonly used for technologi-
cal applications. In superconducting magnets and wires
most popular are Nb3Sn and Nb3Ge compounds with
A15 structure [3]. A few years ago it has been shown
that BaSn5 has similar electronic properties to the A15
superconductors [4].

In the presented paper thermodynamic properties of
superconducting state induced in hexagonal BaSn5 (TC =
4.4 K) were determined. The numerical analysis was
based on the Eliashberg equations on the imaginary
axis [5–7].

Let us pay attention that the Eliashberg approach ex-
tends the original idea of Bardeen, Cooper, and Schrief-
fer [8], taking exactly into consideration the electron–
phonon interaction. In the framework of the Eliash-
berg formalism, the strong coupling corrections to the
BCS results are dependent on the value of the parame-
ter kBTC/ωln. The symbol ωln is called the logarithmic
phonon frequency

ωln ≡ exp

 2

λ

Ωmax∫
0

dΩ
α2F (Ω)

Ω
ln (Ω)

 (1)

and in our case it is equal to 72.92 meV. For BaSn5
superconductor, the Eliashberg function (α2F (Ω)) has
been calculated by employing an ab initio pseudopoten-
tial method and a linear response scheme in the pa-
per [9]. The maximum phonon frequency (Ωmax) and
the electron–phonon coupling constant (λ) are equal to
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16.52 meV and 0.96, respectively. In the case of the BCS
limit, the Eliashberg function is non-zero only for very
high frequency, so that kBTC/ωln → 0. In BaSn5, value
of the ratio kBTC/ωln is equal to 0.0052. In this case the
thermodynamic parameters cannot be calculated exactly
in the framework of the BCS model.

2. The Eliashberg equations

The Eliashberg equations on the imaginary axis for
half-filled electron band can be written in the following
form [5]:

∆nZn =
π

β

M∑
m=−M

K (n,m)− µ∗θ (ωc − |ωm|)√
ω2
m + ∆2

m

∆m (2)

and

Zn = 1 +
π

βωn

M∑
m=−M

K (n,m)√
ω2
m + ∆2

m

ωm, (3)

where the symbol ∆n ≡ ∆ (iωn) denotes the order
parameter and Zn ≡ Z (iωn) is the wave function
renormalization factor; n-th Matsubara frequency is
defined as: ωn ≡ π

β (2n− 1), where β ≡ 1/kBT . The
electron–phonon pairing kernel K (n,m) is given by

K (n,m) ≡ 2

Ωmax∫
0

dΩ
Ω

(ωn − ωm)
2

+ Ω2
α2F (Ω) . (4)

In Fig. 1 we have presented the form of K (n,m) for
the positive Matsubara frequencies and the temperature
0.6 K. It is easy to notice that the pairing kernel is always
positive and it achieves the strong maximum for ωn =
ωm. The above result means that Eqs. (2) and (3) can
have the superconducting solution (∆n 6= 0)).

The depairing electron correlations are parameterized
by the Coulomb pseudopotential (µ∗). The symbol θ de-
notes the Heaviside unit function, ωc is the cut-off energy
and ωc = 5Ωmax.

The physical values of the Coulomb pseudopoten-
tial have been determined in the first step: µ∗ =
0.152, whereas the following condition has been used:
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Fig. 1. The pairing kernelK (n,m) as a function of the
numbers n and m.

Fig. 2. The dependence of the maximum value of the
order parameter on the Coulomb pseudopotential.

[∆m=1 (µ∗)]T=TC
= 0. The calculations have assumed

the experimental values of the critical temperature of
TC = 4.4 K [4]. The dependence of the maximum value
of the order parameter on the Coulomb pseudopotential
has been shown in Fig. 2.

The Eliashberg equations have been solved for 2201
Matsubara frequencies (M = 1100) by using the method
presented in [10] and [11] and recently tested in [12]. In
the considered case, the obtained Eliashberg solutions are
stable for T ≥ 0.6 K.

3. The numerical results

Figure 3a presents the form of the order parameter on
the imaginary axis for the selected values of temperature.
It can be seen that the maximum value of the function
∆m is taken for m = 1.

The temperature dependence of the order parameter is
convenient to be traced by plotting the curve ∆m=1 (T )
(Fig. 3b).

In the case of BaSn5, the obtained numerical data can
be reproduced by the formula

Fig. 3. (a) The order parameter on the imaginary axis
for the selected values of temperature. The first 100 val-
ues of the function ∆m are plotted. (b) The influence
of temperature on the maximum value of the order pa-
rameter. The symbols represent the numerical results.
The line was obtained by using Eq. (5).

∆m=1 (T ) = ∆m=1 (T0)

√
1−

(
T

TC

)κ
, (5)

where ∆m=1 (T0) ≈ ∆m=1 (T = 0.6 K) = 0.73 meV, and
κ = 3.6.

Let us note that the values of the function ∆m=1 (T )
cannot be properly set within the framework of the BCS
theory, as [κ]BCS = 3 [13].

The physical value of the order parameter should be
calculated analytically continuing the Eliashberg equa-
tions solutions on the real axis (∆m → ∆ (ω)). For this
purpose, the following formula can be used:

∆ (ω) =
p1 + p2ω + . . .+ prω

r−1

q1 + q2ω + . . .+ qrωr−1 + ωr
. (6)

The values of the parameters pj and qj have been deter-
mined according to the method presented in the publica-
tion [14]. Additionally, it has been assumed: r = 50.

The results for the order parameter have been shown
in Fig. 4. It can be seen that the real part of the function
∆ (ω) takes the non-zero values only for the low frequen-
cies. From the physical point of view, this means the lack
of damping effects. For the higher values of the frequency
both Re (∆ (ω)) and Im (∆ (ω)) are characterized by the
complicated courses.

In the next step we have to calculate the physical value
of the order parameter by using the following equation:

∆ (T ) = Re (∆ (ω = ∆ (T ) , T )) . (7)
For T0 = 0.6 K the following result has been obtained:
∆ (0) = 0.74 meV, while ∆ (0) ≡ ∆ (T0).

The form of the wave function renormalization factor
on the imaginary axis is shown in Fig. 5a. Just as it was
in the case of the order parameter, the function Zm takes
the highest value for m = 1.

On the other hand, the effect of temperature on Zm=1

is rather negligible, which was presented in Fig. 5b.
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Fig. 4. Real and imaginary part of the order param-
eter on the real axis for T = 0.6 K. The Eliashberg
function [9] is present in the background — the correla-
tion between the course of the order parameter and the
spectral function is clearly visible.

Fig. 5. (a) The wave function renormalization factor
on the imaginary axis for the selected values of tem-
perature. The first 100 values of the function Zm are
plotted. (b) The influence of temperature on the maxi-
mum value of the renormalization factor. The symbols
represent the numerical results. The line was obtained
by using Eq. (8).

However, throughout the analyzed temperature range,
the wave function renormalization factor assumes high
values. Suffice it to note that the BCS theory predicts
Zm = 1.

The high values of the function Zm=1 (T ) are related
to the significant strong-coupling effects appearing in
BaSn5.

It can be noted that the numerical results obtained for
the wave function renormalization factor can be repro-
duced using the following formula:

Zm=1 (T ) =

Zm=1 (T0) + [Zm=1 (TC)− Zm=1 (T0)]

(
T

TC

)κ
, (8)

where Zm=1 (T0) = 1.93, and Zm=1 (TC) = 1 + λ.

The free energy difference between the superconduct-
ing and normal state (∆F ) for an interacting electron–
phonon systems should be determined by using the
expression [15]:

∆F

ρ (0)
= −2π

β

M∑
n=1

(√
ω2
n + ∆2

n − |ωn|
)

×(ZSn − ZNn
|ωn|√
ω2
n + ∆2

n

), (9)

where ZSn and ZNn denote the wave function renormaliza-
tion factors for the superconducting (S) and normal (N)
state, respectively. In Fig. 6 (lower part) we have plot-
ted the dependence of ∆F on the temperature. From the
physical point of view, the negative values of ∆F prove
that the superconducting state is stable below the critical
temperature.

Fig. 6. (lower part) The free energy difference between
the superconducting state and the normal state as a
function of temperature. (upper part) The thermody-
namic critical field as a function of temperature.

In the next step we have calculated the values of the
thermodynamic critical field (cgs units)

HC√
ρ (0)

=
√
−8π [∆F/ρ (0)]. (10)

The temperature dependence of HC/
√
ρ (0) has been

shown in Fig. 6 (upper part).
Next, the specific heat in the normal state can be ob-

tained with the help of formula
CN (T )

kBρ (0)
=
γ

β
, (11)

where the Sommerfeld constant is given by γ ≡
2
3π

2 (1 + λ). The dependence of the specific heat for the
superconducting and the normal state on temperature is
presented in Fig. 7. The characteristic jump occurs at
the critical temperature and is marked with the vertical
dashed line.

The thermodynamic functions designated in this work
allow us to calculate the value of the dimensionless
ratios:
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Fig. 7. The dependence of the specific heat in the su-
perconducting and normal state on the temperature.

R∆ ≡
2∆ (0)

kBTC
= 3.88, (12)

RC ≡
∆C (TC)

CN (TC)
= 1.78, (13)

RH ≡
TCC

N (TC)

H2
C (0)

= 0.151. (14)

It should be noted that the parameters R∆–RH in the
framework of the BCS theory take the universal values
equal to 3.53, 1.43, and 0.168, respectively [8, 15].

4. Conclusions

The thermodynamic properties of superconducting
state in hexagonal BaSn5 has been analyzed in the frame-
work of the Eliashberg approach. We have stated that
the critical value of the Coulomb pseudopotential is equal
to 0.152, which proves that the depairing correlations are
not negligible in this superconductor. Additionally, we
have shown that the dimensionless parameters R∆, RC
and RH have the values: 3.88, 1.78, and 0.151, respec-
tively, and this significantly differs from the predictions
of BCS theory. Finally, the ratio of m∗

e/me reaches

the maximum of 1.96 at the critical temperature. Above
results show that the hexagonal BaSn5 is superconductor
with strong electron–phonon interaction and it cannot be
properly described by using the classical BCS theory.
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