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P. Tarasewicz∗

Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń,
Jagiellońska 13, 85-067 Bydgoszcz, Poland

An extension of the Penson–Kolb–Hubbard model is investigated. This is made in the zero single-electron
hopping integral limit. The extension consists in the addition of the three and the four-electron potentials to the
Penson–Kolb–Hubbard Hamiltonian. The pair-hopping term as well as the new ones are treated via the mean field
approximation. The ground state properties and the critical temperature are investigated for several cases with
different values of the couplings in those new terms. It turns out that the three-electron repulsion as well as the
four-electron one lead to the superconductor–Mott insulator transition at some concentration of particles.
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1. Introduction

The Penson–Kolb model has been known since 1986 [1].
The Penson–Kolb–Hubbard model (PKH) is an extension
of this model and recently has attracted much interest
due to its potential applicability to problems connected
to novel superconductors such as cuprates, iron-based
systems, and fullerenes and so on [2–6]. This can be
justified by the fact that the coherence length of fermion
pairs is very short in these materials. In PKH the inter-
site pair hopping potential binds electrons or holes into
on-site pairs that can move throughout the lattice.

The investigation of the influence of the three and the
four fermion interactions on superconductivity due to the
local pairing stands for the main motivation of this re-
search. Such terms can be a result of nonlocal interac-
tions of pairs of electrons with phonons. The question
of the existence of many-particle interactions such as the
four-fermion potential in superconductors has been al-
ready asked during last three decades, e.g, in [7–12].

The investigated model is represented by a following
Hamiltonian:

H = H0 +H ′, (1.1)
where

H0 = E
∑
iσ

niσ + U
∑
i

ni+ni− +W
∑
i

nini+1

+U3

∑
i

(ni+ni−ni+1 + nini+1+ni+1−)

(1.2)
+U4

∑
i

ni+ni−ni+1+ni+1−

−tp
∑
i

(c∗i+c
∗
i−ci+1−ci+1+ + c∗i+1+c

∗
i+1−ci−ci+)
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and the single-fermion hopping term H ′ =
−t

∑
iσ

(c∗iσci+1σ + c∗i+1σciσ) that is neglected in this

paper. Moreover, ni =
∑
σ
niσ, niσ = c∗iσciσ while c∗iσ

and ciσ are the creation and annihilation operators of
a fermion with spin σ = ±. Furthermore, E = E0 − µ
is the site energy counted with respect to the chemical
potential µ. U,W,U3 and U4 are the coupling constants
of the Hubbard, intersite two-fermion, three-fermion and
four-fermion interactions, respectively. At last, −t and
−tp are the single-fermion and the pair nearest-neighbor
hopping integrals.

Now it is useful to apply the pseudospin operators
ρzi = 1

2 (ni − 1) and ρ+i = (ρ−i )
∗ = c∗i+c

∗
i−. Next, the

Hamiltonian H0 is expressed in terms of these opera-
tors and approximated by making use of the mean field
method. This procedure gives the following mean field
Hamiltonian:

H0 =
∑
i

Hi0 + CL, (1.3)

where Hi0 = Ẽρzi + Ũ(ρzi )
2 − ∆(ρ+i + ρ−i ). z stands

for the coordination number, L is the number of all lat-
tice sites whereas new parameters are as follows: Ẽ =
2E+U+4W+2U3+zm(4W+4U3+U4)+2zη(U4+2U3),
Ũ = 2(U +2U3 + zDU4 + z(n− 1)U3) and C = E+W +
∆2

ztp −2zU4η
2− 1

2zm
2(U4+4U3+4W )−2(U4+2U3)zmη.

The gap parameter is defined as ∆ = ztp 1
L

∑
i〈ρ

+
i 〉 =

ztp 1
L

∑
i〈ρ
−
i 〉 while m = 1

L

∑
i〈ρzi 〉 and η = 1

L

∑
i〈(ρzi )2〉.

m and η can be expressed in terms of the average number
of fermions per lattice site n = 1

L

∑
i〈ni〉 and the aver-

age number of double occupancies per lattice site D =
1
L

∑
i〈ni+ni−〉, i.e., m = 1

2 (n−1) and η = 1
2D−

1
4 (n−1).

The averages are taken over the grand canonical ensem-
ble with the mean field Hamiltonian (1.3).

Hamiltonian Hi0 acts in a space spanned by the fol-
lowing vectors: |+〉i = c∗i+ |00〉i, |−〉i = c∗i− |00〉i, |00〉i
and |+−〉i = c∗i+c

∗
i− |00〉i, where |00〉i is the vector for
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TABLE IEigenvectors and eigenvalues of Hi0 on
a given lattice site.

Eigenvector Eigenvalue
|+〉i 0

|−〉i 0

|E〉i = u |+−〉i − v |00〉i
1
4
Ũ + ε

|G〉i = u |00〉i + v |+−〉i
1
4
Ũ − ε

the empty i-th site. The results of the diagonalization of
this Hamiltonian are shown in Table I. As can be seen
from it there are the coefficients u and v that have their
squares equal to u2 = 1

2 (1+
Ẽ
2ε ) and v

2 = 1
2 (1−

Ẽ
2ε ) with

ε =
√

1
4 Ẽ

2 +∆2. At this stage there appears the ques-
tion concerning the ground state and the identification
of the proper eigenvector or eigenvectors in the case of
degeneration. Note that the situation is clear for Ũ ≤ 0.
In this case the ground state vector corresponds to the
|G〉i vector. However, even if Ũ > 0 |G〉i can still be the
ground state vector up to the moment when Ũ becomes
too large and the singly-occupied states dominate. Now
let us assume that Ũ is not so large and the total ground
state vector is |G〉 =

⊗L
i=1 |G〉i. Then the ground state

energy per lattice site is EG
L = C + 1

L

∑
i

( 14 Ũ − ε).

2. The discussion of results

Now let us deal with the investigation of the ground
state properties and the behavior of the critical temper-
ature in the function of the concentration of particles in
the system. The system of equations from which the gap
parameter ∆, the average number of double occupancies
per lattice site and the chemical potential can be calcu-
lated is determined from the definitions given in Sect. 1
and reads

2

ztp
=
L(β)

ε
, D =

n

2
− 1

2
K(β),

n = 1− Ẽ

2ε
L(β), (2.1)

where 1
kT with the Boltzmann constant k, L(β) =

e−β
Ũ
4 sinh βε

1+e−β
Ũ
4 cosh βε

, K(β) = eβ
Ũ
4

eβ
Ũ
4 +cosh βε

. The equation for

D can be transformed to another form, i.e., D = n −
1 + 1

2
e−β

Ũ
4 eβ

Ẽ
2

1+e−β
Ũ
4 cosh βε

that can be useful later. If Ũ
4 < ε,

then in the β → ∞ limit one gets the solutions of the
system (2.1), namely ∆(n) = ztp

2

√
n(2− n) for n ≤ nc

while if n > nc, then ∆(n) = 0. nc is the critical con-
centration of electrons that depends on the values of U ,
U3, U4. The average number of pairs is in turn equal to
D = n

2 for n ≤ nc but for n > nc one has two cases,
namely, if nc ≤ 1, then D = 0 while if nc > 1, then
D = n − 1. The chemical potential for arbitrary tem-
perature, in general, can be calculated from the formula
µ = E0+

1
2 (n−1)

[
ztp+ z

2 (4W +2U3)
]
+ z

2D(U4+2U3)+

1
2 (U +4W +2U3) obtained from (2.1). Note that the de-
pendence on the temperature is present in the function
D and if D undergoes a jump the same concerns µ.

Some numerical calculations have been done regard-
ing the ground state properties. The 2D square lattice
has been investigated. The parameters used in them
are as follows: z = 4, tp = 0.05 eV, W = 0, E0 = 0
and U = 0.19 eV. Four cases have been considered: (A)
U3 = U4 = 0, (B) U3 = 0.01 eV, U4 = 0, (C) U3 = 0,

Fig. 1. The dependence of the gap parameter ∆ at
T = 0 on the concentration of electrons n is depicted.
The upper right part corresponds to the A case, while
the upper left part to the D case. The lower left part
corresponds to the C case, while the lower right one to
the B case. Note the first order phase transition to the
Mott insulator phase at some nc in parts B and C.

Fig. 2. The dependence of the average number of local
pairs per lattice site D at T = 0 on the concentration
of electrons n is depicted. The upper right part corre-
sponds to the A case, while the upper left part to the D
case. Note the first order phase transition to the Mott
insulator phase at some nc in parts B and C. The lower
left part corresponds to the B case, while the lower right
one to the C case.
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Fig. 3. The dependence of the chemical potential µ at
T = 0 on the concentration of electrons n is depicted.
The upper right part corresponds to the A case, while
the upper left part to the C case.The lower left part
corresponds to the D case, while the lower right one to
the B case. Note the first order phase transition to the
Mott insulator phase at some nc in parts B and C.

Fig. 4. The dependence of the critical temperature Tc

on the concentration of electrons n is depicted. The
upper right part corresponds to the A case, while the
upper left part to the C case. The lower left part cor-
responds to the B case, while the lower right one to the
D case.

U4 = 0.01 eV, and (D) U3 = 0, U4 = −0.01 eV. All
these cases are shown in Figs. 1–3. The dependence of
the gap parameter ∆ on n is the same in A and D cases
and is represented by the curve that has the maximum
at half-filling and is symmetric for n < 1 and n > 1. This
symmetry is destroyed if the three or the four-fermion re-
pulsion appears in the system. One can notice the sharp
transition at some nc in both of cases (B and C) which in
fact stands for the superconductor–Mott insulator tran-
sition. At this point ∆ vanishes and pairs get broken if
nc ≤ 1 (D = 0) or some of them survive and are frozen on
lattice sites if nc > 1 (D = n−1) which can be recognized

in parts of Figs. 1–3 with cases B and C. The chemical
potential µ(n) has a jump as well in these cases. In the
end the dependence of the critical temperature on n is
given in Fig. 4. In case A one observes Tc = 0 for the
empty (n = 0) and the full band (n = 2) but for the
rest values of n this is constant, i.e., Tc = 8.842 K. How-
ever, the situation drastically changes if U3 or U4 become
nonzero. For U3 > 0 and U4 > 0 (B and C cases) one
can see the sharp jump from zero to the maximal value
and next the critical temperature gradually drops down
to zero at some nc. If U4 < 0, then there are two jumps,
the first one at n = 0 and the second one at n = 2.
However, the former is significantly lower than the lat-
ter. The symmetry between the n < 1 case and n > 1
one is broken.

3. The final remarks

In this paper an extended Penson–Kolb–Hubbard
model (PKH) has been investigated. The three and
the four-fermion potentials have been added to the PKH
Hamiltonian and such a system has been handled with
the mean field approximation. The dependence of the
ground state properties and the critical temperature on
the concentration of fermions n have been studied for
four cases with different couplings U3 and U4. The single-
electron hopping has been neglected. It turned out that
the both U3 > 0 and U4 > 0 lead to the first order tran-
sition at some critical concentration nc that is in fact the
superconductor–Mott insulator transition. These facts
reveal the serious influence of many-particle interactions
on the properties of superconducting systems with local
pairing. Further investigations of this problem will be
undertaken in the future, e.g., the involvement of the
single-electron hopping.
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