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The mechanical wave transmission was investigated by a two-dimensional structure made of rods with a peri-
odic arrangement — as the base structure. Compared structures had the same network constant in the direction
perpendicular to the propagation of the acoustic wave, while the distances of subsequent layers of phononic crys-
tal increased by a certain factor k. Depending on parameter k, chirped phononic crystal transmission properties
were tested. The numerical analysis uses the finite difference time domain algorithm. The discrete Fourier trans-
form allowed to determine the frequency characteristics of the tested systems. In order to verify numerical data,
the experimental data was analyzed.
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1. Introduction

The periodic arrangement of two or more materi-
als is called a phononic crystal (PhC). The diffrac-
tion and interference of mechanical waves propagating
in phononic crystals affects the phononic phenomenon
of a phononic band gap (PhBG), which means that
waves with specific frequencies do not propagate in the
structure. The determining of certain PhC proper-
ties is obtained by appropriate selection of the mate-
rials used that make up the composite structure and
their geometrical parameters, such as shape or distribu-
tion [1]. We distinguish three types of PhC depending
on the spatial distribution of materials that make up
the structure: one (1D), two (2D) or three-dimensional
(3D). The majority of research on the properties of
phononic structures focuses on the band structure
determination [2–4].

These studies focus mainly on periodic structures,
whereas for the aperiodic structures, the band structure
cannot be determined. To determine the properties of
1D structures characterized by the lack of short-range
ordering, algorithms such as transfer matrix method
(TMM) and finite difference time domain (FDTD) are
used [5]. The FDTD algorithm is used to study the
propagation of mechanical waves in aperiodic 2D and 3D
structures [6, 7].

Mechanical waves are used to extinguish the flame [8],
and phononic structures can be used to direct and focus
the beam. Phononic crystals can also be used as sensors,
selective acoustic filters or noise suppressors [9, 10].
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The FDTD method is one of the most efficient differ-
ential numerical techniques used in acoustics to analysed
the mechanical wave propagation in aperiodic structures.
The computation costs are high but calculations are very
accurate.

Structures called chirped or graded materials are
widely used due to their special properties allowing ma-
nipulation of the propagating wave. They are used for
focusing, trapping, bending waves, opening of wide full
band gaps, controlling reflection in the spatial dispersion
beams [11].

2. FDTD algorithm in 2D

The pressure field P [kg/(m s2)] and the phase velocity
vector v [m/s] discretization in time and space lead to ob-
tain an FDTD algorithm for acoustic wave propagation.
The interdependence between P and v is depicted by the
first order acoustic equations, which are denoted as

1

ρc2
∂P

∂t
= −∇ · v, (1)

ρ
∂v

∂t
= −∇P, (2)

where ρ [kg/m3] is material mass density and c is the
phase velocity of mechanical wave propagated.

Equations (1) and (2) expanded in terms of compo-
nents for 2D case takes the form
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Which, after converting derivatives into differential equa-
tions, gives the form of recursive equations for the point
(i, j) of the discretized two-dimensional space located at
the time (n) as
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Pn+1(i, j) = Pn(i, j)− ρ (i, j) (c(i, j))
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]
, (5)
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y (i, j) = vn−1/2

y (i, j)

− ∆t

∆zρ (i, j)
[Pn(i, j + 1)− Pn(i, j)] . (7)

Alternating calculations of Eqs. (5)–(7) allow to simulate
the propagation of a mechanical wave in given materials.

The boundary conditions were perfect matched layer
(PML), in consequence of which the propagating mechan-
ical wave was extinguished and did not take its reflection
towards the simulation area.

3. Research

The work analyzed the propagation of mechanical
waves in the phononic structure using the FDTD al-
gorithm. The structure shown in Fig. 1 was made of
polypropylene rods with a diameter of 25 mm distributed
for the base structure (k = 0) with a lattice constant ay
equal to 40 mm which should expire the wave for fre-
quencies around the 4143 Hz. The following columns
are distant from each other according to the dependence
ai = ay + ik for k taking the following values: {0, 0.5,
1} cm. The distance ds from the sound source to the
tested structure was 30 cm, and the distance from the
structure to the analyzer was dd = 10 cm. The space
was digitized with a step of ∆z = 5 mm. In order to
stabilize the simulation, the time step ∆t is determined
from the Courant condition, which for 2D simulation for
maximum wave velocity in simulation is determined by
the dependence

∆t <

[
cmax

√
1

(∆x)
2 +

1

(∆y)
2

]−1

. (8)

In the simulation, the time step value was determined as
∆t = ∆z/ (2cmax) for the maximum propagation velocity
cmax of the wave taken as 3000 m/s.

Fig. 1. Diagram of the measurement system with the
analyzed structure.

TABLE I

Material parameters of the components [12, 13].

Material
Mass density
ρ [kg/m3]

Velocity of sound
v [m/s]

Zr55Cu30Ni5Al10 6829 1633
polypropylene 900 1450
air 1.29 331.45

In order to suppress the wave in the simulation, 8 layers
of PML were used around the studied area.

Table I summarizes the material parameters of the an-
alyzed structure.

Amorphous alloys are an intensively studied group of
materials, especially their magnetic properties [14–17]
and the occurrence of the magnetocaloric effect are an-
alyzed [18–21]. The study investigated the influence of
material on wave propagation by converting rods made of
polypropylene to an amorphous alloy Zr55Cu30Ni5Al10.

Fig. 2. Pressure distribution after 5,000 steps for a
structure made of polypropylene for an incident wave
frequency of 4143 Hz and k = 0.

Fig. 3. Power spectrum for (a) incident and (b) trans-
mitted wave for two different rods materials.
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Fig. 4. Pressure distribution for (a) k = 5 mm and (b)
k = 10 mm.

Fig. 5. Change in sound pressure level in relation to
the measuring system without structure for (a) k =
0 mm, (b) k = 5 mm and (c) k = 10 mm.

The results for 5000 simulation time steps for different
materials are almost identical and are shown in Fig. 2.
Inside the dashed line in Fig. 2 is the test area but outside
the extinction of the wave occurs — in PML area. Fig-
ure 3 shows the signal power spectrum obtained on the
basis of discrete Fourier transform pressure time series
before (Fig. 3a) and after (Fig. 3b) of analyzed struc-
ture. One can notice a clear lack of material influence
on the propagation of a mechanical wave in the phononic
structure.

Figure 4 shows the pressure distribution for k equal to
5 mm (Fig. 4a) and 10 mm (Fig. 4b) for f = 4143 Hz.
After the DFT was conducted, the power spectrum was
determined, and on its basis the transmission parameters
of the tested signal were determined. For k equal to 0,
0.5, and 1 cm the transmission coefficient was 0.23%,
39.4%, and 31.8%, respectively.

On the basis of Fig. 1, a measurement stand was
built where the generated mechanical sinusoidal wave
pulse was passing through the structures. Sound pressure
level was measured using a Norsonic Nor140 detector.
The measurement results are collected in Fig. 5.

4. Conclusions

The paper proposes a phononical structure for the
acoustic wave range made of polypropylene rods with a
spatial distribution where the center of bandgap is desig-
nated theoretically as 4143 Hz. The simulation using the
FDTD algorithm confirmed the existence of a bandgap
for the base structure, and the change in the material
of the rods did not affect the behavior of the mechanical
wave propagation. Increase of the parameter k influenced
the increase of the transmission coefficient of the struc-
ture under examination.

The experiment confirmed the existence of a band gap
near the frequency of 4100 Hz. The reduction of the
sound pressure level was on the order of 20 dB almost to
the acoustic background level. For non-zero values of the
parameter k, the band gap was shifted toward the lower
frequencies. Such structures could be used in acoustic
barriers.
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