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We study the transport properties of a quantum dot coupled to ferromagnetic leads with occupancy dependent
hybridization. Using the modified equation of motion approach and modified perturbation theory we show that the
assisted hopping processes can be the mechanism which is responsible for the generation of plateau in the linear
conductance. This process breaks the particle–hole symmetry for conductance and magnetization. Moreover,
the assisted hopping processes combined with the spin polarization cause the change of thermoelectric transport
characteristics such as thermopower, the heat conductance and the figure of merit.
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1. Introduction

Actually, one of the widely discussed issues is the inter-
play between heat and charge flows in the quantum dot.
The main effect for this interaction is the Seebeck effect
in which the temperature gradient generates the ther-
movoltages. The discovery of the spin Seebeck effect [1]
caused the increased interest in the spin-dependent trans-
port in QD systems [2–12]. For the quantum dot sys-
tem the spin dependent transport can be realized by the
use of an external magnetic field [2–5] or ferromagnetic
leads [6–12]. The spin current offers an opportunity for
fast switching of the system’s magnetization. This fea-
ture is one of the key technologies used today in spin-
tronic devices.

Currently, there is a great interest in finding systems
with high efficiency of the thermal to spin current con-
version and the strong dependence of magnetization on
carrier concentration. The use of assisted hopping pro-
cess can have a great importance in such systems. The
assisted hopping effect introduces the dependence of cou-
pling between QD and metallic leads on the occupancy
of the QD level by the electron with opposite spin,
Vkβσ(1 − αn̂d−σ). The Vkβσ term describes the tunnel-
ing processes between the dot and electrodes where α is
the assisted hopping parameter. The nearest-neighbor
hopping integral, depending on the occupation of the op-
posite spin electrons (also known as correlated hopping),
was used previously to describe the metallic ferromag-
netism of the bulk systems (see e.g. [13] and the refer-
ences cited therein). The correlated hopping causes the
enhancement of magnetic ordering. There are two mech-
anisms used in the phenomena of ferromagnetic state in-
crease. In the first one, the correlated hopping causes
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spin-dependent band-shift and as a result it generates
the effective exchange field (this is an equivalent of the
Stoner mechanism). The second mechanism is based on
the effective mass reduction, or equivalently, a bandwidth
expansion, which leads to the spin-dependent density of
states. As Hirsch has shown [14], the difference of ma-
jority and minority spin electrons bandwidth enhances
the spin polarization. As a result, ferromagnetism arises
from the combination of gains in potential and kinetic
energy.

In this work, we study the effect of assisted hop-
ping term on the spin-dependent thermoelectric trans-
port characteristics of the quantum dot attached to fer-
romagnetic leads. The assisted hopping process in the
quantum dot system was used in previous works to de-
scribe the coupling between quantum dot and external
nonmagnetic leads (see e.g. [15]). The characteristic fea-
ture of assisted hopping is that this process breaks the
electron–hole symmetry. This feature can explain the
asymmetric dependence of QD conductance as a function
of gate voltage, which is observed experimentally [3]. Ex-
tending the previous results [15] we take into account the
coupling with ferromagnetic leads which creates an effec-
tive exchange field on the quantum dot [8, 12], which
in turn causes the spin-dependence of transport coeffi-
cients. Additionally, the assisted hopping term enhances
the magnetic moment of a quantum dot by adding the
spin-dependent shift of quantum dot energy and by spin-
dependent coupling of quantum dot and ferromagnetic
leads. The combination of assisted hopping term with the
leads’ polarization effect allows us to obtain the system
characterized by the strong dependence on spin direc-
tion. The system proposed by us is described by the ex-
tended single impurity Anderson model, where we use the
alternative equation of motion approach [16]. This ap-
proach for intermediate values of the Coulomb repulsion
(U ≈ 5Γ ) is comparable with the numerical normaliza-
tion group and Quantum Monte Carlo calculations [16].
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2. The model

The considered system contains a single-level quantum
dot attached to two ferromagnetic electrodes. We assume
that the coupling between the quantum dot and ferro-
magnetic electrodes will depend on the QD occupation.
The Hamiltonian of our model has the form

H =
∑
σ

εdσn̂dσ + Un̂d↑n̂d↓ +
∑
kσ

β=L,R

(εkβ − µβ)n̂kβσ

+
∑
kσ

β=L,R

[
Vkβσ(1− αn̂d−σ)d+σ ckβσ + h.c.

]
, (1)

where d+σ (dσ) are the creation (annihilation) operators
for the dot electron with spin σ, c+kβσ (ckβσ) are the cre-
ation (annihilation) operators for the ferromagnetic lead
electron, β = L,R corresponds to the left and right leads,
respectively, εkβ is the energy dispersion of β lead, µβ is
the chemical potential of β lead, U is the on-site Coulomb
interaction between electrons on the dot, and εdσ is the
dot energy.

The hopping matrix element Vkβσ describes the tun-
neling processes between the dot and ferromagnetic elec-
trodes and α is the assisted hopping parameter. The par-
allel or antiparallel magnetization of left and right leads is
possible. Because the antiparallel magnetization of leads
gives the similar results as non-magnetic leads [6, 12], we
will focus on the parallel orientation of the leads’ magne-
tizations. In our model the effective coupling of quantum
dot to the spin σ band of the ferromagnetic lead, Γ eff

σ ,
is dependent on the assisted hopping parameter α and
on the occupation of the quantum dot by electron with
opposite spin. Assuming that the left and right lead are
identical and using flat density of states in the leads we
obtain the following expression:

Γ eff
σ = (1− αnd−σ)2Γ (1 + σp), (2)

where p is the spin polarization of the lead.
The spin polarization of the lead changes the value

of effective coupling and additionally creates an effective
exchange field on the quantum dot [8, 12]. The additional
spin-dependent shift of quantum dot energy is obtained
via the correlation parameter Bσ, which can be written
as [13]:

Bσ =
2α

1− αnd−σ

∞∫
−∞

1

π
Im
(
Γ eff
σ Gdσ (ω)

)
f(ω)dω, (3)

where Gdσ(ω) is the quantum dot Green function. To
obtain this function we employ the alternative equation
of motion method [13, 16]. As the result we obtain

Gdσ(ω) =
1

ω − εdσ − iΓ eff
σ − Σdσ(ω)

, (4)

where the quantum dot self-energy is given by
Σdσ(ω) = Und−σ +Bσ + Σ

′

dσ(ω) (5)

and Σ
′

dσ(ω) = Σ
(2)
dσ (ω)/

(
1 +A1Σ

(2)
dσ (ω)

)
is the higher

order part of self-energy [16].

3. Numerical results

Electron transport through the quantum dot system
is accompanied with the transfer of both charge and
heat. In the linear temperature and bias regime, the
charge current and the heat current can be expressed by
the help of transport coefficients: the spin-dependent
electrical conductance

G0σ = e2I0σ (6)
and the spin-dependent thermoelectric power

Sσ = − 1

2 |e|T
I1σ
I0σ

, (7)

where the thermal integrals are defined as:

Inσ =
1

h

4πΓ eff
σLΓ

eff
σR

Γ eff
σ

∞∫
−∞

(ω − µ)n
(
−∂f
∂ω

)
ρdσ(ω)dω. (8)

In Fig. 1 we present the dependence of linear conduc-
tance G0 = G0↑ + G0↓ (Fig. 1a) and spin-polarization
of linear conductance PG = (G0↑ −G0↓) / (G0↑ −G0↓)
(Fig. 1b) on the dot energy for several values of leads’ spin
polarization p. In the computations we use the assisted
hopping parameter α = 0.2, T = 0.1Γ and U = 5Γ . Us-
ing the non-zero value of α parameter causes the asym-
metric character of obtained transport coefficients. In
Fig. 1a we show the G0(εd) dependence for several val-
ues of p. For p = 0 we observe the conductance plateau,
which is also observed experimentally (see e.g. [3]).

Fig. 1. The linear conductance (a) and the spin po-
larization of conductance (b) as a function of the dot
energy for different values of the polarization of leads.
The other parameters are: U = 5Γ , T = 0.1Γ and
α = 0.2.
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The increase of leads’ spin polarization generates the ef-
fective exchange field, which brings to the reduction of
the linear conductance [4]. The especially strong reduc-
tion occurs for the εd > −U/2 region, i.e. in the region
in which the effective exchange field is additionally en-
hanced by the correlation parameter Bσ. For α = 0 we
obtain the symmetric character of G0(εd) (see e.g. [6, 7]).
The effective exchange field, created by spin polarization
of the leads, is enhanced by the correlation parameter
Bσ, which leads to stronger split of QD spectral func-
tion. If we will use additionally the external magnetic
field, we can obtain the spin polarization of linear con-
ductance effect, without the Kondo resonance splitting
(see [12]).

In Fig. 1b we show the dependence of spin polarization
of linear conductance, PG(εd), on the dot energy. The
value of PG(εd) is positive, so G0↑ > G0↓, which proves
that the tunneling of spin-up electrons compared to spin-
down electrons dominates. For α = 0 the dependence
of PG(εd) has the minimum for particle–hole symmetry
point εd = −U/2. The non-zero value of α parameter
shifts the minimum of PG(εd) towards εd ≈ −0.75U . For
εd > −U/2 region, the spin polarization of linear conduc-
tance rapidly grows.

In Fig. 2a we show the dependence of thermopower S =
S↑ + S↓ on the quantum dot’s energy. The thermopower
changes its sign near εd ≈ −0.75U . At εd ≈ −1.1U
(εd ≈ −0.1U) we observe the local maximum (minimum)
of S. Using the non-zero value of α parameter causes the

Fig. 2. The thermopower (a) and spin thermopower
(b) as a function of the dot energy for different values
of polarization of the leads. The other parameters are:
U = 5Γ , T = 0.1Γ and α = 0.2.

disturbance of antisymmetric character of S(εd) depen-
dence. Higher values of S are achieved for εd < −0.75U ,
because when one decrease εd, the T/Γ eff ratio increases,
which leads to the increase of thermopower [7]. The in-
crease of electrode polarization causes the additional en-
hancing of S for −1.25U < εd < −0.75U , and weak-
ening of S for −0.75U < εd < 0.25U . Additionally,
for −0.75U < εd < 0.25U one can observe that the
thermopower minimum shifts towards lower dot’s en-
ergy. The polarization growth of the ferromagnetic leads
causes the weak increase of total thermopower, whereas
the thermopower associated with the spin up (down) elec-
trons changes radically. As Krawiec and Wysokiński [10]
showed, in the model where U = ∞ the increase of po-
larization increases the value of S↑ and additionally de-
creases the value of S↓. The spin dependence of ther-
mopower can be expressed by the SS = S↑ − S↓ factor.
For the finite values of U the difference S↑ − S↓ will be
dependent on the dot energy (see [7]). The spin ther-
mopower as a function of the dot energy for different
spin polarization p is shown in Fig. 2b. For zero spin po-
larization the spin thermopower vanishes. The increased
value of leads’ spin polarization causes the noticeable in-
crease of SS for −0.75U < εd < 0.25U , i.e. in the area
for which the polarization of the quantum dot is strong.
As in the case of S, there is the shift of the maximum of
SS value towards lower dot’s energies. For εd < −0.75U ,
where the polarization of QD is much weaker, we obtain
much less change of SS and we observe that the position
of SS minimum value does not change.

4. Conclusions

In this paper we analyzed the spin dependence of the
electrical conductance and the thermopower of quantum
dot coupled to ferromagnetic leads. In the considered
model we have taken into account the influence of as-
sisted hopping process on the thermoelectric transport
properties. The calculations were performed using the
modified equation of motion approach for extended sin-
gle impurity Anderson model. The numerical results
showed that the assisted hopping process breaks the
particle–hole symmetry of both the zero-bias differen-
tial conductance and the thermopower. This process is
one of the methods to obtain the asymmetry of conduc-
tance and the thermopower. Another way of obtaining
the transport coefficients asymmetry is to consider an
energy- and spin-dependent band structure of the leads
(e.g. a square-root shape DOS or parabolic band with
some additional spin asymmetry as shown in [11]). The
assisted hopping process can be the mechanism which
is responsible for the linear conductance plateau gen-
eration. For the non-zero values of electrode polariza-
tion this process enhances the effective exchange field for
−0.75U < εd < 0.25U , causing the strong increase of
the spin polarization of linear conductance and the spin
thermopower. For εd < −0.75U the influence of assisted
hopping parameter on the transport properties is much
weaker.
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