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We analyze properties of trial wave functions in fractional quantum Hall effect, generated by the “short-range”,
three-body repulsion and its mean field approximation. Ground states of electron repulsion Hamiltonians at filing
factor ν = 1/2 are evaluated as a description of physically observed state ν = 5/2. We analyze overlaps between the
Moore–Read state and its mean field approximation for different number of particles and compare both states with
ground state of the Coulomb interaction in the first excited Landau level. Our study also includes examination of
electron–electron correlation functions and electron densities of excited states for both interactions.
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1. Introduction

Ongoing study on a topic of particle–hole symme-
try [1–3] in fractional quantum Hall effect (FQHE) re-
sulted in a recent paper [4] on the mean field approxima-
tion (MFA) of the three-body interaction Hamiltonians.
This discussion is especially relevant in the context of
debate regarding competition between the Moore-Read
Pfaffian (Pf) [5] and the anti-Pfaffian (APf) [6, 7] states
as the description of experimentally observed ν = 5/2
FQHE state [8–13]. Although both Pf and APf states
exhibit the same energy they are not topologically equiv-
alent (edge states).

The Moore–Read Pfaffian state is the famous ground
state of three-body “short range” repulsion, defined by
three-body Haldane pseudopotentials where only the first
one is nonzero (V (3)

3 > 0, V
(3)
m>3 = 0):

H =
∑
l=3

V
(3)
l P

(3)
3Q−l,

where the 3-body Haldane pseudopotential V (3)
l is the

energy of three electrons in the state with total angu-
lar momentum 3Q − l and P

(3)
3Q−l are projection opera-

tors. Surprisingly, even though Pf and APf are described
entirely in terms of three-body interaction, they seem
to capture many features of ground states of two-body
Coulomb interaction Hamiltonians in half-filled first ex-
cited Landau level (LL1). Remarkably, the Moore–Read
state can also be characterized as a Jack polynomial
which makes it fall into the category of the Jack states
and allows for application of tools known from the sym-
metric functions theory [14–22]. This is especially use-
ful when one generates coefficients of Pf wave function
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for large systems, as the Jack states can be computed
with relatively fast recursion formula [17, 18, 23, 24].

In this paper we analyze properties of the Moore–Read
state and ground state of “short-range” MFA Hamiltonian
i.e. we apply MFA to the three-body Hamiltonian and
generate simpler, two-body interaction. This new inter-
action hopefully gives ground state with similar proper-
ties as ground state of initial Hamiltonian (see Sect. 2).
We base our work on the recent paper [4], where authors
apply MFA to three-body Hamiltonians. As a result, the
authors obtain corresponding values of two-body pseu-
dopotentials. Then they tested usefulness of MFA with
comparison of energy spectra. Original work of this paper
is the further test of MFA introduced in [4]. We examine
overlaps of Pf wave function and its MFA for different
number of particles, also we compare both states with
ground states of the Coulomb repulsion in half-filled LL1
(as both are considered as trial functions describing this
state). Then we present electron densities and correla-
tion functions. Even though paper [4] provided values of
two-body MFA for different sphere sizes, we use the ther-
modynamical limit case (which coincides with values for
the disc geometry) — two-body pseudopotentials with
only two nonzero values of pseudopotential in a ratio 3:1
(V1 = 3, V3 = 1, Vm>3 = 0).

2. Mean field approximation

A formalism proposed in [4] allows for reduction
of three-body interaction into a two-body interaction,
which contains certain physical characteristics of higher
order interaction. In general, for a fully spin polar-
ized state of electrons in spherical geometry, with 2Q
magnetic flux quanta (flux quantum is φ0 = hc/e),
three-body interaction can be written as

V(3) =
1

3!3!

∑
{qi;ki}

V
(3)
q1,q2,q3;k1,k2,k3

c†q3c
†
q2c
†
q1ck1

ck2
ck3
, (1)

(82)
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where qi, ki are quantum numbers of particles and
V

(3)
q1,q2,q3;k1,k2,k3

is the energy of triplet of particles at
orbitals q1, q2, q3; k1, k2, k3. MFA method involves re-
placing one factor c†q1ck1

with 〈c†q1ck1
〉 (ground state

expectation value). For uniform, rotationally symmet-
ric ground states, expectation value takes the form
〈c†q1ck1〉 = ν δq1,k1 . Then MF Hamiltonian equals (up
to a constant)

V(2) =
∑

q1,q2;k1,k2

V
(2)
q1,q2;k1;k2

c†q1c
†
q2ck1

ck2
, (2)

where matrix elements are given by the partial trace of
the three-body interaction Hamiltonian

V
(2)
q1,q2;k1;k2

= ν

Q∑
l=−Q

〈q1, q2, l| V(3) |k1, k2, l〉 . (3)

It had been checked numerically that this interaction give
a rotationally symmetric Hamiltonian [4]. For rotation-
ally symmetric Hamiltonians two-body pseudopotentials
can be obtained via diagonalization of V(2) for two par-
ticle system. Obviously, pseudopotentials vary for dif-
ferent forms of three-body interactions (V (3)

q1,q2,q3;k1,k2,k3
)

and there is dependence on number of flux quanta as well.
However “short-range” repulsion in the thermodynamical
limit (2Q → ∞) produces simple values of V1 = 3 and
V3 = 1.

3. Results

We denote the ground states of MFA Hamiltonian of
“short-range” three-body repulsion Hamiltonian by ΨMF .
Pf wave function is denoted by ΨMR and the ground state
of Coulomb interaction in half-filed LL1 by ΨLL1. Table I
contains values of overlaps of mentioned wave functions
for different values of system sizes.

TABLE I

Overlaps between ground states of examined interactions
for different numbers of particles. Consecutive columns
are: number of particles N , flux quanta 2Q, dimensional-
ity of Hilbert space, overlaps between Moore–Read state
and ΨMF , overlaps between ground state of Coulomb
interaction in LL1 and ΨMF and Moore–Read state, re-
spectively. Overlaps calculated in spherical geometry.

N
2Q =

2N − 3
dim 〈ΨMR|ΨMF 〉 〈ΨLL1|ΨMF 〉 〈ΨLL1|ΨMR〉

6 9 18 0.97655 0.45909 0.61182
8 13 151 0.98432 0.66963 0.77736
10 17 1514 0.96093 0.54359 0.71708
12 21 16660 0.89334 0.42309 0.67146
14 25 194668 0.90290 0.31985 0.48139

Overlaps of ΨMF and ΨMR are rather high for all of
the examined system sizes, for the largest system this
value is slightly above 0.9. This suggests that MFA gives
indeed good approximation of ΨMR. Overlaps with ΨLL1

are lower, for all of the system sizes MF state gives worst
overlaps than the Pf state, however values do not fall

Fig. 1. Electron–electron correlation functions for the
ground states of Pf state and its mean field approxima-
tion in units of magnetic length `B . System sizeN = 14,
2Q = 25.

below 0.3. We stress that values of overlaps decrease
with the number of particles, however dimensionality of
Hilbert spaces rapidly increases with number of particles.

Correlation functions for ground states of “short range”
three-body repulsion Hamiltonian and its MFA are pre-
sented in Fig. 1 (system size N = 14, 2Q = 25). Pre-
sented data are measured in the units of magnetic length
` =

√
~e
B . One notices both correlation functions are

very similar and vary only slightly. Moreover, local ex-
trema and inflection points share similar positions. This,
together with already discussed very high overlaps (see
Table I) suggest that the Moore–Read state and its MFA
exhibit very similar physical features.

Two consecutive figures (Figs. 2 and 3) represent elec-
tron density for ground states of three-body “short-range”
repulsion and MFA for states of quasiholes and quasipar-
ticles (system size 2Q = 24, N = 15 and 2Q = 24,N=14,
respectively). Both pairs of wave functions are in L2 = 12

Fig. 2. Electron density of Pf and MFA on a sphere
2Q = 24 for N = 15 particles. Units of magnetic length
`B . Both ground states are eigenvectors of L2 operators
with L2 = 12. Overlaps of states give very high value
of 0.9907.
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Fig. 3. Electron density of Pf and MFA on a sphere
2Q = 24 for N = 14 particles (2 quasi-particles). Units
of magnetic length `B . Both ground states are eigenvec-
tors of L2 operators with L2 = 12. Overlaps of states
give value of 0.9088.

angular momentum channel. Densities of the states at
2Q = 24, N = 15 are very similar, moreover overlap
is very high: 0.9907. In the case of ground states at
2Q = 24 for N = 14 densities do not undergo the same
shapes in Fig. 3. However, differences are not significant
in absolute terms. Deviations from the average value of
density are insignificant and never reach more than 10%.
Overlaps between those states are lower than in previous
case and reach 0.9088.

4. Conclusion

Our study of three-body ‘short-range” repulsion and
its MFA confirms similarities between ground states
of those interactions at half-filled Landau levels. We
find that overlaps are quite high (see Table I) and
ground states correlation functions are similar. When
one changed number of flux quanta and particles (by
adding/subtracting particle/flux quanta), ground states
of examined interactions revealed similar electron den-
sities and high overlap for system size N = 15 and
2Q = 24. For system system of N = 14 and 2Q = 24
overlaps were lower and densities revealed different
shapes, however differences were not big in absolute
terms. We also compared both ΨMR and ΨMF with
ground state of the Coulomb repulsion in half-filled LL1.
Examined overlaps decreased with system size, but for
all of the examined cases stayed above 0.3. From both
functions Pf give better overlaps and is more likely to
give proper description of this state.
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