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In this article, we have constructed some new soliton solutions of the nonlocal nonlinear medium equation

via three reliable approaches. The executed approaches are modified Kudryashov method, sinh-Gordon equation
expansion method and extended sinh-Gordon equation expansion method. In this case, there are three types of
competing nonlinearities that are taken into account in our model. They are nonlocal nonlinearity, cubic nonlin-
earity, and quintic nonlinearity. By means of the aforementioned methods, dark, bright, combined dark-bright,
singular, combined singular, periodic, and other soliton solutions are obtained from the nonlocal nonlinear medium
equation, and their respective existence conditions.
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1. Introduction

Observation of soliton solutions have a pivotal role in
the study of integer and fractional order partial differen-
tial equations. To form a variety of soliton solutions of
the nonlinear integer or fractional order partial differen-
tial equations has become a vital task because the solu-
tions of their equations can clarify the thorough descrip-
tion of nonlinear phenomena of various real-life problems
in the field of nonlinear optics, plasma physics, communi-
cations and electronic engineering, fluid mechanics, ocean
engineering, signal processing and so on. In this context,
it is quite important to establish and adopt a new ana-
lytical method for exploring a general and newer soliton
solutions for any nonlinear partial differential equations
related to fiber optics with the help of symbolic com-
putation based software maple. As we know, solitons
play a significant role in many physical systems and it
appears in various forms like as kink, pulse, envelope,
dark, bright, breather,cusp, combined soliton, and many
others. Generally, soliton is a localized wave form that
travels along the system with constant velocity and un-
deformed shape.
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Because of the growing progress of computer and com-
putation technologies and artificial intelligence based
symbolic computation like as Maple, Mathematica and
MATLAB, several analytical approaches have attempt
and aptly applied to look for more general and newer
exact solutions of nonlinear integer and fractional or-
der partial differential equations (NPDEs) such as
the Lie symmetry analysis [1], extended trial equa-
tion method [2, 3], functional variable method [4],
Kudryashov’s method [4], Jacobian elliptic equations ex-
pansion method [5, 6], exp (−φ(ξ))-expansion method [7],
semi-inverse variational principle [8], ansatz method [9],
(G′/G)-expansion method [10], modified Kudryashov’s
method [11, 12], sine-Gordon expansion method [13, 14],
extended sinh-Gordon expansion method [14–18].

In this article, we will investigate some new complex
hyperbolic and complex trigonometric function solutions,
especially dark, bright, combined dark–bright, singular,
combined singular, periodic soliton and other soliton so-
lutions from nonlocal nonlinear medium equation via
modified Kudryashov’s method, sine-Gordon expansion
method, and extended sinh-Gordon equation expansion
method.

The residue of the paper is arranged the following
way. In Sect. 2, we will discuss the studied mathematical
model. Methodology will be elaborated in Sect. 3. As an
application of the aforementioned methods, we will solve
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the nonlinear nonlocal medium equation with three me-
dia in Sect. 4. Finally, we conclude our applied method
and generated results will be discussed in Sect. 5.

2. Mathematical model

The dimensionless form of the nonlocal nonlinearity
and cubic-quintic nonlinearities with spatio-temporal dis-
persion is given by [1]:

iqt + ρ1qxx + ρ2qxt +
(
b1 |q|2 + b2 |q|4

)
q

+b3

(
|q|2
)
xx
q = 0, (1)

where u(x, t) is the slowly varying amplitude, while x
and t are dimensionless transverse and propagation co-
ordinates.

In Eq. (1), the first term gives the linear evolution,
while the second term represents diffraction and finally
the last three terms that are weakly nonlocal nonlinearity,
cubic nonlinearity, and quintic nonlinearity are due to
competing nonlinearities. It should be noted that, in
previous studies, the Lie group analysis were employed
to extract solitons to Eq. (1).

3. Methodology

In this regard, we consider a general form of nonlinear
partial differential equation as

F (q, qx, qt, qxx, qxt, qtt, . . .) = 0, (2)
where q = q(x, t) is an unknown complex function and F
is a polynomial function with respect to some functions
or specified variables, which contains nonlinear terms and
highest order derivatives of the q(x, t). Introducing the
transformation q(x, t) = P (η)e iφ(x,t), where ξ = x − vt,
and φ (x, t) = −κx + ωt + θ. Then, Eq. (2) reduces to
the following ODE:

G(P, P ′, P ′′, . . .) = 0, (3)
where G is a polynomial of P and its derivatives and the
superscripts suggest the ordinary derivatives with respect
to ξ.

3.1. Algorithm of modified Kudryashov method

We present a succinct about the modified Kudryashov
method [11, 12] producing new exact solutions for a given
nonlinear partial differential equation.
• Step-1: It is supposed that the solution P (ξ) of the

nonlinear Eq. (3) can be presented as

P (ξ) = a0 +

N∑
l=1

alQ
l (ξ) , (4)

where the arbitrary constants al(l = 1, 2, . . . , N) are de-
termined latter but aN 6= 0 and is a positive integer,
N which is determined by using balancing principle on
Eq. (4) and satisfies the following ansatz equation:

Q′ (ξ) =
(
Q2 (ξ)−Q (ξ)

)
ln(a), (5)

where a 6= 0, 1 and the general solution of Eq. (5) is
Q (ξ) = 1

1+daξ
.

• Step 2: By inserting Eq. (4) along with Eq. (5) into
Eq. (3) and equating the coefficients of powers of Qi (ξ)
to zero, we receive a system of algebraic equations.
• Step 3: Solving these system, we secure the value of

free parameters a0, a1, k and v. After that, putting the
obtained values in Eq. (4), finally generates new exact
solutions for Eq. (2).

3.2. Algorithm of sine-Gordon equation expansion
method

The sine-Gordon equation expansion method [13, 14]
is one of the most efficient technique for investigating
the bright, dark, dark-bright, singular soliton, and com-
bined singular soliton solutions of the nonlinear differen-
tial equations. Basic ideas of the sine-Gordon equation
expansion method can be abbreviated as follows:
Consider the following sine-Gordon equation [13]:

uxx − utt = m2 sin (u) , (6)
where u = u(x, t) and m is a constant. Applying the
transformation u(x, t) = U(ξ) where ξ = k(x − vt), re-
duces Eq. (6) to the following nonlinear ordinary differ-
ential equation:

U ′′ =
m2

k2 (1− c2)
sin (U) . (7)

Multiplying U ′ on the both sides of Eq. (7) and integrat-
ing it once gives[(

U

2

)′]2
=

m2

k2(1− c2)
sin2

(
U

2

)
+ C, (8)

where C is an integration constant.
By setting C = 0, U

2 = w(ξ), and m2

µ2(1−c2) = a2 in
Eq. (8), we obtain

w′ = a sin(w). (9)
If we take a = 1 in Eq. (9), we find

w′ = sin (w) . (10)
This is a simplified form of the sine-Gordon equation.
Therefore, Eq. (10) has the following solutions:

sin (w) = sech (ξ) , cos (w) = tanh (ξ) (11)
and

sin (w) = icsch (ξ) , cos (w) = coth (ξ) . (12)
Now, we assume the formal solution of Eq. (3):

P (w) = (13)
N∑
j=1

cosj−1 (w) [Bj sin (w) +Aj cos (w)] +A0.

It is assumed that the solution P (ξ) of the nonlinear
Eq. (13) along with Eq. (11) and Eq. (12) can be pre-
sented as follows:

P (ξ) = (14)
N∑
j=1

tanhj−1 (ξ) [Bjsech (ξ) +Aj tanh (ξ)] +A0,

and
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P (ξ) = (15)
N∑
j=1

cothj−1 (ξ) [ iBjcsch (ξ) +Aj coth (ξ)] +A0.

By determining the value of N using the homoge-
neous balance principle, substituting the value of N into
Eq. (13) and putting the result into the reduced ordinary
differential equation using Eq. (10) yield a nonlinear al-
gebraic system. Equating the coefficients of sinj(w) and
cosj(w) equal to zero and solving the acquired system
give the values of Aj , Bj , k, and v. Finally, after substi-
tuting the values of Aj , Bj , k, and v into Eq. (14) and
Eq. (15), we can retrieve the dark, bright, combined dark-
bright, singular and combined singular soliton solutions
of Eq. (1).

3.3. Algorithm of extended sinh-Gordon equation
expansion method

The extended sinh-Gordon equation expansion
method [15–18] is a new robust technique for construct-
ing the bright, dark, dark-bright, singular, combined
singular, and other soliton solutions of the nonlinear
differential equations. The fundamentals of the extended
sinh-Gordon equation expansion method can be abbre-
viated as follows: Consider the following sinh-Gordon
equation [15]:

uxt = m sinh (u) , (16)
where u = u(x, t) and m is a constant. Introducing
the transformation u(x, t) = U(ξ) where ξ = k(x − vt),
reduces Eq. (16) to the following nonlinear ordinary
differential equation:

U ′′ = − m

k2v
sinh (U) . (17)

Multiplying U ′ on the both sides of Eq. (17) and
integrating it once gives[(

U

2

)′]2
= − m

k2v
sinh2

(
U

2

)
+ p, (18)

where p is an integration constant.
By setting U

2 = w(ξ), and − m
k2v = q in Eq. (18), we

obtain

w′ =

√
p+ q sinh2 (w). (19)

For different values of parameters p and q, Eq. (19) pos-
sesses the following set of solutions [15]:
• Case-I: When we take p = 0 and q = 1, Eq. (19)

becomes
w′ = sinh (w) . (20)

This is a simplified form of the sinh-Gordon equation.
Simplifying Eq. (20), the following solutions are ob-
tained [15]:

sinh (w) = ± isech (ξ) , cosh (w) = − tanh (ξ) (21)
and

sinh (w) = ±csch (ξ) , cosh (w) = − coth (ξ) , (22)
where i =

√
−1 represents an imaginary number.

• Case-II: When we take p = 1 and q = 1, Eq. (19)
becomes

w′ = cosh (w) . (23)
This is also a simplified form of the sinh-Gordon equa-
tion. Simplifying Eq. (23), the following solutions are
obtained [15]:

sinh (w) = tan (ξ) , cosh (w) = ± sec (ξ) (24)
and

sinh (w) = − cot (ξ) , cosh (w) = ± csc (ξ) . (25)
Now, we assume the formal solution of Eq. (3):

P (w) = (26)
N∑
j=1

coshj−1 (w) [Bj sinh (w) +Aj cosh (w)] +A0.

It is assumed that the solution P (ξ) of the nonlinear
Eq. (26) along with Eq. (20), Eq. (21) and Eq. (22) can
be presented as follows:

P (ξ) = (27)
N∑
j=1

(− tanh (ξ))
j−1

[± iBjsech(ξ)−Aj tanh (ξ)]+A0,

and
P (ξ) = (28)

N∑
j=1

(− coth (ξ))
j−1

[±Bjcsch (ξ)−Aj coth (ξ)] +A0.

Similarly, it is supposed that the solution P (ξ) of the non-
linear Eq. (26) along with Eq. (23), Eq. (24) and Eq. (25)
can be presented as follows:

P (ξ) = (29)
N∑
j=1

(± sec (ξ))
j−1

[Bj tan (ξ)±Aj sec (ξ)] +A0,

and
V (ξ) = (30)

N∑
j=1

(± csc (ξ))
j−1

[−Bj cot (ξ)±Aj csc (ξ)] +A0.

By determining the value of N using the homogeneous
balance principle, inserting the value of N into Eq. (26)
along with Eq. (20) give a nonlinear algebraic system.
Equating the coefficients of sinhj(w) and coshj(w) equal
to zero and solving the acquired system give the values
of Aj , Bj , k, and v. Finally, we substitute the values
of Aj , Bj , k, and v into Eq. (27), Eq. (28), we retrieve
dark, bright, combined dark-bright, singular and com-
bined singular solutions of Eq. (1) (as for example, case-
I). Similarly, we can proceed the same way for case-II
and we receive the explicit trigonometric function solu-
tions of Eq. (1).

4. Mathematical analysis
In order to solve the model, the following hypothesis

is selected:
q(x, t) = P (ξ)e iφ(x,t), (31)
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where P (ξ) represents the shape of the pulse and φ (x, t)
represents the phase component which is defined as the
following transformation:

ξ = x− vt, φ (x, t) = −κx+ ωt+ θ. (32)
Substituting Eq. (31) and Eq. (32) into Eq. (1) and de-
composing into real and imaginary parts, give

(ρ1 − vρ2)P ′′ − (ω + ρ1κ
2 − κωρ2)P (33)

+b1P
3 + b2P

5 + 2b3

{
P (P ′)

2
+ P 2P ′′

}
= 0,

and
v − ρ2 (κv + ω) + 2ρ1κ = 0. (34)

From Eq. (34), setting the coefficients of the linearly inde-
pendent functions to zero gives the speed of the soliton as

v =
ρ2ω − 2ρ1κ

1− ρ2κ
. (35)

The constraint condition ρ2κ 6= 1. By applying Eq. (35)
in Eq. (33), we get

(ρ1 (1− ρ2κ)− (ρ2ω − 2ρ1κ) ρ2)P
′′

− (1− ρ2κ) (ω + ρ1κ
2 − κωρ2)P

+b1 (1− ρ2κ)P 3 + b2 (1− ρ2κ)P 5

+2b3 (1− ρ2κ)
{
P (P ′)

2
+ P 2P ′′

}
= 0. (36)

Balancing P 5 with P 2P ′′ in Eq. (36), then we get N = 1.

4.1. Application of modified Kudryashov method
Assuming solution of Eq. (36) is
P (ξ) = a0 + a1Q (ξ) . (37)

By inserting Eq. (37) along with its first and second
derivatives into Eq. (36) and comparing the terms in the
resulting equation, a nonlinear system is gained which by
solving it, we determined the following sets:
• Set 1: A= ln(a), a0=∓ 1

2

√
− 6b3

b2
A, a1= ±

√
− 6b3

b2
A,

ω = − 3b3
4b2

(
8κ2A2b3ρ2

2−3A4b3ρ2
2−4κ2b1ρ22−16A2κb3ρ2

+2A2b1ρ2
2 + 8κb1ρ2 + 8A2b3 − 4b1

)
, and ρ1 =

− 3b3
4b2

(
8κ2A2b3ρ2

2 − 3A4b3ρ2
2 − 4κ2b1ρ2

2 − 16A2κb3ρ2
+2A2b1ρ2

2 + 8κb1ρ2 + 8A2b3 − 4b1
)
.

Therefore, Set 1 corresponds to the following solutions
of Eq. (1):

q1,2(x, t)=∓
√
−6b3
b2
A

(
1

2
− 1

1+dax−vt

)
e i (κx+ωt+θ),

b2b3 < 0. (38)
For simplification of Eq. (38), we may apply
ax = ex ln(a), and as we know ey = cosh y + sinh y,
e−y = cosh y − sinh y, and d = 1.
Rewriting Eq. (38), we obtain the hyperbolic function
solutions

q1,2(x, t) = ∓
√
−6b3
b2
A

×
(
1

2
− 1

1+ cosh ((x−vt)A)+ sinh ((x−vt)A)

)
e i (κx+ωt+θ),

b2b3 < 0.

where A = ln(a) and v = 3b3
4b2

(
3A4b3ρ2

−8A2κ2b3ρ2 + 16A2κ b3 − 2A2b1ρ2 + 4κ2b1ρ2 − 8κ b1
)
.

4.2. Application of sine-Gordon equation expansion
method

As before, we know N = 1 by balancing the linear
terms of highest order in Eq. (36) with the highest order
nonlinear terms. As a result, Eq. (14) and Eq. (15) take
the sine-Gordon equation expansion approach in the fi-
nite expansion form

P (ξ) = B1sech (ξ) +A1 tanh (ξ) +A0, (39)
and

P (ξ) = iB1csch (ξ) +A1 coth (ξ) +A0, (40)
and so from Eq. (13)

P (w) = B1 sin (w) +A1 cos (w) +A0, (41)
where either A1 or B1 may be zero, but both A1 and B1

cannot be zero simultaneously.
By substituting Eq. (41) along with Eq. (10) into

Eq. (36) and using some mathematical operations, we
arrive at a nonlinear algebraic system. Solving the re-
sulting system with the help of symbolic computation
package, results in:
• Set 1: A0 = 0, A1 = ±

√
− 6b3

b2
, B0 = 0,

ω = 3b3
b2

(
κ3b1ρ2 − 8κ3b3ρ2 − κ2b1 + 8κ2b3 − 2κb1ρ2

+12κb3ρ2 − 2b1 + 12b3), and ρ1= 3b3
b2

(
κ2b1ρ2

2−8κ2b3ρ22

−2κ b1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 12b3ρ2

2 + b1 − 8b3
)
.

Therefore, Set 1 corresponds to the following solutions
of Eq. (1):

q3,4(x, t) = ∓
√
−6b3
b2

tanh (x− vt) e i (κx+ωt+θ),

b2b3 < 0. (42)
and

q5,6(x, t) = ∓
√
−6b3
b2

coth (x− vt) e i (κx+ωt+θ),

b2b3 < 0. (43)
where v = 3b3

b2

(
κ2b1ρ2 − 8κ2b3ρ2 − 2κ b1 + 16κb3

−2b1ρ2 + 12b3ρ2).
• Set 2: A0 = 0, A1 = 0, B1 = ±

√
− 6b3

b2
,

ω = 3b3
b2

(
κ3b1ρ2 + 4κ3b3ρ2 − κ2b1 − 4κ2b3 + κ b1ρ2

+4κb3ρ2 + b1 + 4 b3), and ρ1 = 3b3
b2

(
κ2b1ρ2

2 + 4κ2b3ρ2
2

−2κ b1ρ2 − 8κ b3ρ2 + b1ρ2
2 + 4 b3ρ2

2 + b1 + 4b3
)
.

Therefore, Set 2 corresponds to the following solutions
of Eq. (1):

q7,8(x, t) = ±
√
−6b3
b2

sech (x− vt) e i (κx+ωt+θ),

b2b3 < 0 (44)
and

q9,10(x, t) = ± i

√
−6b3
b2

csch (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (45)
where v = 3b3

b2

(
κ2b1ρ2 + 4κ2b3ρ2 − 2κb1 − 8κb3

+b1ρ2 + 4b3ρ2).
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• Set 3-1: A0 = 0, A1 =
√
− 3b3

2b2
, B1 = ± 1

2

√
6b3
b2

,

ω = 3b3
b2

(
4κ3b1ρ2 − 8κ3b3ρ2 − 4κ2b1 + 8κ2b3 − 2κb1ρ2

+3κb3ρ2−2b1+3b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2−8κ2b3ρ22

−8κb1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 3b3ρ2

2 + 4b1 − 8b3
)
.

Therefore, Set 3-1 corresponds to the following solu-
tions of Eq. (1):

q11,12(x, t) =

(√
−3b3
2b2

tanh (x− vt)

±1

2

√
6b3
b2

sech (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0 (46)
and

q13,14(x, t) =

(√
−3b3
2b2

coth (x− vt)

± i
1

2

√
6b3
b2

csch (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (47)
where v = 3b3

4b2

(
4κ2b1ρ2 − 8κ2b3ρ2 − 8κb1 + 16κb3

−2b1ρ2 + 3b3ρ2).
• Set 3-2: A0 = 0, A1 = −

√
− 3b3

2b2
, B1 = ± 1

2

√
6b3
b2

,

ω = 3b3
b2

(
4κ3b1ρ2 − 8κ3b3ρ2 − 4κ2b1 + 8κ2b3 − 2κb1ρ2

+3κb3ρ2 − 2b1+3b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2−8κ2b3ρ22

−8κb1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 3b3ρ2

2 + 4b1 − 8b3
)
.

Therefore, Set 3-2 corresponds to the following solu-
tions of Eq. (1):

q15,16(x, t) =

(
−
√
−3b3
2b2

tanh (x− vt)

±1

2

√
6b3
b2

sech (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0 (48)
and

q17,18(x, t) =

(
−
√
−3b3
2b2

coth (x− vt)

± i
1

2

√
6b3
b2

csch (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (49)
where v = 3b3

4b2

(
4κ2b1ρ2 − 8κ2b3ρ2 − 8κb1 + 16κb3

−2b1ρ2 + 3b3ρ2).

4.3. Application of extended sinh-Gordon equation
expansion method

In this section, a new and effective version of the ex-
tended ShGEEM is applied to generate new solitary wave
and other solutions of Eq. (1) in non-linear optics. As be-
fore, we know N = 1 by balancing the linear terms of
highest order in Eq. (36) with the highest order nonlin-
ear terms.

4.3.1. For case-I: w′ = sinh (w)
With the help of Eqs. (26)–(28), the extended

ShGEEM has the solution in the form of Eq. (36):
P (ξ) = ± iB1sech (ξ)−A1 tanh (ξ) +A0, (50)

and
P (ξ) = ±B1csch (ξ)−A1 coth (ξ) +A0, (51)

and so
P (w) = B1 sinh (w) +A1 cosh (w) +A0, (52)

where either A1 or B1 may be zero, but both A1 and B1

cannot be zero simultaneously.
By substituting Eq. (52) into Eq. (36) and using some

mathematical operations, we arrive at a nonlinear alge-
braic system. Solving the resulting system with the help
of symbolic computation package, results in:
• Set 1: A0 = 0, A1 = ±

√
− 6b3

b2
, B0 = 0,

ω = 3b3
b2

(
κ3b1ρ2 − 8κ3b3ρ2 − κ2b1 + 8κ2b3 − 2κb1ρ2

+12κb3ρ2−2b1 + 12b3), and ρ1=
3b3
b2

(
κ2b1ρ2

2−8κ2b3ρ22

−2κb1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 12b3ρ2

2 + b1 − 8b3
)
.

Therefore, Set 1 corresponds to the following solutions
of Eq. (1):

q19,20(x, t) = ∓
√
−6b3
b2

tanh (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (53)
and

q21,22(x, t) = ∓
√
−6b3
b2

coth (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (54)
where v = 3b3

b2

(
κ2b1ρ2 − 8κ2b3ρ2 − 2κb1 + 16κb3

−2b1ρ2 + 12b3ρ2).

• Set 2: A0 = 0, A1 = 0, B1 = ±
√
− 6b3

b2
,

ω = 3b3
b2

(
κ3b1ρ2 + 4κ3b3ρ2 − κ2b1 − 4κ2b3 + κb1ρ2

+4κb3ρ2+b1+4b3), and ρ1=
3b3
b2

(
κ2b1ρ2

2+4κ2b3ρ2
2

−2κb1ρ2 − 8κb3ρ2 + b1ρ2
2 + 4b3ρ2

2 + b1 + 4b3
)
.

Therefore, Set 2 corresponds to the following solutions
of Eq. (1):

q23,24(x, t) = ± i

√
−6b3
b2

sech (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (55)
and

q25,26(x, t) = ±
√
−6b3
b2

csch (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (56)
where v = 3b3

b2

(
κ2b1ρ2 + 4κ2b3ρ2 − 2κb1 − 8κb3

+b1ρ2 + 4b3ρ2).

• Set 3-1: A0 = 0, A1 =
√
− 3b3

2b2
, B1 = ±

√
− 3b3

2b2
,

ω = 3b3
4b2

(
4κ3b1ρ2 − 8κ3b3ρ2 − 4κ2b1 + 8κ2b3 − 2κb1ρ2

+3κb3ρ2−2b1+3 b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2−8κ2b3ρ22

−8κb1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 3b3ρ2

2 + 4b1 − 8b3
)
.

Therefore, Set 3-1 corresponds to the following solu-
tions of Eq. (1):
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q27,28(x, t) =

(
−
√
−3b3
2b2

tanh (x− vt)

∓ i

√
−3b3
2b2

sech (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (57)
and

q29,30(x, t) =

(
−
√
−3b3
2b2

coth (x− vt)

∓
√
−3b3
2b2

csch (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (58)
where v = 3b3

4b2

(
4κ2b1ρ2 − 8κ2b3ρ2 − 8κb1 + 16κb3

−2b1ρ2 + 3 b3ρ2).

• Set 3-2: A0 = 0, A1 = −
√
− 3b3

2b2
, B1 = ±

√
− 3b3

2b2
,

ω = 3b3
4b2

(
4κ3b1ρ2 − 8κ3b3ρ2 − 4κ2b1 + 8κ2b3 − 2κb1ρ2

+3κb3ρ2−2b1+3b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2−8κ2b3ρ22

−8κb1ρ2 + 16κb3ρ2 − 2b1ρ2
2 + 3b3ρ2

2 + 4b1 − 8b3
)
.

Therefore, Set 3-2 corresponds to the following solu-
tions of Eq. (1):

q31,32(x, t) =

(√
−3b3
2b2

tanh (x− vt)

∓ i

√
−3b3
2b2

sech (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (59)
and

q33,34(x, t) =

(√
−3b3
2b2

coth (x− vt)

∓
√
−3b3
2b2

csch (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (60)
where v = 3b3

4b2

(
4κ2b1ρ2 − 8κ2b3ρ2 − 8κb1 + 16κb3

−2b1ρ2 + 3b3ρ2).

4.3.2. For case-II: w′ = cosh (w)

With the help of Eq. (26), Eq. (29) and Eq. (30),
the extended ShGEEM has the solution in the form
of Eq. (36):

P (ξ) = B1 tan (ξ)±A1 sec (ξ) +A0, (61)
and

P (ξ) = −B1 cot (ξ)±A1 csc (ξ) +A0, (62)
and so

P (w) = B1 sinh (w) +A1 cosh (w) +A0, (63)
where either A1 or B1 may be zero, but both A1 and B1

cannot be zero simultaneously.

By substituting Eq. (63) into Eq. (36) and using
some mathematical operations, we arrive at a nonlinear

algebraic system. Solving the resulting system with the
help of symbolic computation package, results in:

• Set 1: A0 = 0, A1 = ±
√
− 6b3

b2
, B0 = 0,

ω = 3b3
b2

(
κ3b1ρ2 − 4κ3b3ρ2 − κ2b1 + 4κ2b3 − κb1ρ2

+4κb3ρ2−b1+4b3), and ρ1=
3b3
b2

(
κ2b1ρ2

2−4κ2b3ρ22

−2κb1ρ2 + 8κb3ρ2 − b1ρ22 + 4b3ρ2
2 + b1 − 4b3

)
.

Therefore, Set 1 corresponds to the following solutions
of Eq. (1):

q35,36(x, t) = ∓
√
−6b3
b2

sec (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (64)
and

q37,38(x, t) = ∓
√
−6b3
b2

csc (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (65)
where v = 3b3

b2

(
κ2b1ρ2 − 4κ2b3ρ2 − 2κb1 + 8κb3

−b1ρ2 + 4b3ρ2).

• Set 2: A0 = 0, A1 = 0, B0 = ±
√
− 6b3

b2
,

ω = 3b3
b2

(
κ3b1ρ2 + 8κ3b3ρ2 − κ2b1 − 8κ2b3 + 2κb1ρ2

+12κb3ρ2+2b1+12b3), and ρ1=
3b3
b2

(
κ2b1ρ2

2+8κ2b3ρ2
2

−2κb1ρ2 − 16κb3ρ2 + 2b1ρ2
2 + 12b3ρ2

2 + b1 + 8b3
)
.

Therefore, Set 2 corresponds to the following solutions
of Eq. (1):

q39,40(x, t) = ±
√
−6b3
b2

tan (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (66)
and

q41,42(x, t) = ∓
√
−6b3
b2

cot (x− vt) e i (κx+ωt+θ),

b2b3 < 0, (67)
where v = 3b3

b2

(
κ2b1ρ2 + 8κ2b3ρ2 − 2κb1 − 16κb3

+2b1ρ2 + 12b3ρ2).

• Set 3-1: A0 = 0, A1 =
√
− 3b3

2b2
, B1 = ±

√
− 3b3

2b2
,

ω = 3b3
4b2

(
4κ3b1ρ2 + 8κ3b3ρ2 − 4κ2b1 − 8κ2b3 + 2κb1ρ2

+3κb3ρ2+2b1+3b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2+8κ2b3ρ2
2

−8κb1ρ2 − 16κb3ρ2 + 2b1ρ2
2 + 3b3ρ2

2 + 4b1 + 8b3
)
.

Therefore, Set 3-1 corresponds to the following solu-
tions of Eq. (1):

q43,44(x, t) =

(
−
√
−3b3
2b2

sec (x− vt)

±
√
−3b3
2b2

tan (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (68)
and
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q45,46(x, t) =

(
−
√
−3b3
2b2

csc (x− vt)

∓
√
−3b3
2b2

cot (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (69)
where v = 3b3

4b2

(
4κ2b1ρ2 + 8κ2b3ρ2 − 8κb1 − 16κb3

+2b1ρ2 + 3b3ρ2).
• Set 3-2: A0 = 0, A1 = −

√
− 3b3

2b2
, B1 = ±

√
− 3b3

2b2
,

ω = 3b3
4b2

(
4κ3b1ρ2 + 8κ3b3ρ2 − 4κ2b1 − 8κ2b3 + 2κb1ρ2

+3κb3ρ2+2b1+3b3), and ρ1=
3b3
4b2

(
4κ2b1ρ2

2+8κ2b3ρ2
2

−8κb1ρ2 − 16κb3ρ2 + 2b1ρ2
2 + 3b3ρ2

2 + 4b1 + 8b3
)
.

Therefore, Set 3-2 corresponds to the following solu-
tions of Eq. (1):

q47,48(x, t) =

(√
−3b3
2b2

sec (x− vt)

±
√
−3b3
2b2

tan (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (70)
and

q49,50(x, t) =

(√
−3b3
2b2

csc (x− vt)

∓
√
−3b3
2b2

cot (x− vt)

)
e i (κx+ωt+θ),

b2b3 < 0, (71)
where v = 3b3

4b2

(
4κ2b1ρ2 + 8κ2b3ρ2 − 8κb1 − 16κb3

+2b1ρ2 + 3b3ρ2).
Remarks: To the best of our knowledge some of the

derived solutions have never been reported so far by other
authors in the literature [1] and our executed approaches
are different. In this case, combined soliton solutions are
new and we verified the all solutions by putting back
into original equation via the symbolic software maple
and found them correct.

5. Conclusion

The nonlinear dynamical model Eq. (1) that describes
the optical solitons propagating in a nonlinear medium
with nonlocal nonlinearity, cubic nonlinearity and quin-
tic nonlinearity is investigated analytically. Though the
modified Kudrashov method, sine-Gordon equation ex-
pansion method and extended sinh-Gordon equation ex-
pansion method, we successfully computed bright, dark,
combined bright-dark, singular, combined singular, peri-
odic and other solitons from the studied model. Form
our generated solitons show that the executed methods
are new and robust for solving any other nonlinear dif-
ferential equations.
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