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Squeezing, Sub-Poissonian and Total Noise
in Degenerate Six-Wave Mixing Process
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We study a single-mode squeezing, sub-Poissonian and total noise in degenerate six-wave mixing process. We
establish the analytic expression of first-order and second-order squeezing in terms of total noise under short-time
approximation in degenerate six-wave mixing process. It shows that higher-order squeezing allows a much larger
fractional noise reduction than lower-order squeezing. We observe that the squeezed states are associated with
large number of photons. We find that squeezing is greater in stimulated process than corresponding squeezing
in spontaneous interaction. The photon statistics of the pump mode in the process is investigated and found to
be sub-Poissonian in nature. The effect of sub-Poissonian nature of an optical field in terms of total noise is also
incorporated. We show that the depth of nonclassicality directly depends on the amount of total noise present in
the system. This suggests that the more squeezed the state is, the greater is its total noise in the system.
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1. Introduction

The “squeezing”, “squeezed states”, and “squeezed op-
erator” were introduced by Hollenhorst and Caves [1, 2],
but they were accepted after Walls’ paper [3]. The first
successful experiments on the generation and detection
of squeezed states were reported in the middle of the
1980s [4–6]. Over the past decades, the squeezing [7–11]
in quantized electromagnetic fields has received a great
deal of attention because of its wide applications in many
branches of science and technology, especially for low
noise property [12–14] with an application in high quality
telecommunication [15], quantum cryptography [16, 17],
and so forth. A detailed review of squeezed states was
presented by Dodonov et al. [18] and Anderson et al. [19].
The basic concept of squeezed light is concerned with the
reduction of quantum fluctuations in one of the quadra-
ture, at the expense of increased fluctuations in the other
quadrature.

Squeezing has been focused on theoretical investi-
gations and experimental observations in a variety of
nonlinear optical processes, such as harmonic gener-
ation [20, 21], multiwave mixing processes [22–25],
Raman [26–28], hyper-Raman [29], Hong and Man-
del [30, 31], Hillery [32–34], and Zhan [35] for improv-
ing the performance of many optical devices and op-
tical communication networks. Squeezing and photon
statistical effect of the field amplitude in optical para-
metric, and in Raman and hyper Raman scattering pro-
cesses has also been reported by Perina [36]. Higher-
order sub-Poissonian photon statistics of light have also
been studied by Kim and Yoon [37]. Recently, Prakash
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and Mishra [38, 39] have reported the higher-order sub-
Poissonian photon statistics and their use in detection
higher-order squeezing. A proposal for experimental de-
tection of amplitude n-th-power squeezing has been given
by Prakash and Yadav [40]. The concept of total noise
of a quantum state was introduced by Schumaker [41]
in pure states and pointed out that the total noise is
always greater than or equal to a half and reaches this
value only for coherent state. Further, the notion of to-
tal noise in relation to squeezing of a field state has been
given by Hillery [42] that reported about the measure-
ment of the size of the field amplitude fluctuations of a
state of the field. Furthermore, Gupta et al. [43] and Gill
et al. [44] have also stated that the squeezing and total
noise present in the system can be tuned by varying the
phase angle.

The paper is organized for studying the concept of
squeezing, sub-Poissonian and total noise in degenerate
six-wave mixing (DSWM) process as follows. Section 2
gives definition of squeezing, sub-Poissonian and total
noise of a quantum field state. We establish the analytic
expression of spontaneous and stimulated first-order and
second-order squeezing in DSWM process under short-
time approximation in Sect. 3. The effect of higher-order
squeezing and sub-Poissonian nature of an optical field in
terms of total noise are also incorporated in this section.
Finally, we conclude this paper in Sect. 4.

2. Definition of squeezing, sub-Poissonian
and total noise of a quantum field state

The notion of total noise of quantum state of a single
mode whose density matrix is ρ can be defined [42] in
terms of the operators

X1 =
1

2

(
A+A†

)
and X2 =

1

2i

(
A−A†

)
. (1)
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These operators correspond to the real and imaginary
parts of the field amplitude, respectively, where A ≡ A(t)
and A† ≡ A†(t) are the slowly varying operators because
the interaction between modes, the operators A(t) and
A†(t) induce a slower dependence on time as compared to
fast variation of a(t) ∝ exp(− iωt) and a†(t) ∝ exp(iωt)
that are useful in discussing squeezing effects. For a single
mode of the electromagnetic field with frequency ω and
creation (annihilation) operators a†, (a), they are given
by A(t) = a(t) exp(iωt) and A†(t) = a†(t) exp(− iωt).

From Eq. (1), we find that〈
X2

1

〉
+
〈
X2

2

〉
=

〈
N +

1

2

〉
. (2)

The total noise, which is measure of the total fluctuations
of the amplitude, is

T (ρ) = 〈∆X1〉2 + 〈∆X2〉2 . (3)
The uncertainty relation for X1 and X2 is

∆X1∆X2 ≥
1

4
, (4)

which gives the condition for total noise as

T (ρ) ≥ 〈∆X1〉2 +
1

〈4∆X1〉2
(5)

Amplitude-squared squeezing [32–34] is defined as in
terms of operators Y1 and Y2 as

Y1 =
1

2

(
A2 +A†2

)
and Y1 =

1

2i

(
A2 −A†2

)
, (6)

where Y1 and Y2 are the real and imaginary parts of the
square of field amplitude, respectively.

The operators Y1 and Y2 obey the commutation rela-
tion

[Y1, Y2] = i

(
N +

1

2

)
. (7)

This leads to the uncertainty relation as

∆Y1∆Y2 =

〈
N +

1

2

〉
, (8)

where N is the number operator.
Amplitude–squared squeezing is said to exist in Y1 vari-

able if

(∆Y1)
2
<

〈
N +

1

2

〉
. (9)

Increased nonclassicality gives rise to increase in the to-
tal noise [42, 43]. This fact can be verified by associating
total noise with higher-order squeezing.

In order to relate the total noise to the uncertainty
relations for the quadrature variables, using Hillery’s ap-
proach [42] may be as follows:

(∆X1)
2

(∆Y1)
2 ≥ 1

4
〈X2〉2 ,

(∆X2)
2

(∆Y1)
2 ≥ 1

4
〈X1〉2 . (10)

If above these two inequalities combined with Eq. (2),
we find

4 (∆Y1)
2
[
(∆X1)

2
+ (∆X2)

2
]
≥〈

N +
1

2

〉
−
[
(∆X1)

2
+ (∆X2)

2
]
. (11)

On simplification, we get

TN = (∆X1)
2

+ (∆X2)2 ≥
〈
N + 1

2

〉[
4 (∆Y1)

2
+ 1
] . (12)

We see that, for fixed 〈N〉 as ∆Y1 decreases, the total
noise must increase. TN increases as a state becomes
more squeezed and may be considered as a measure of
depth of nonclassicality.

A state is sub-Poissonian if (∆N)
2
< 〈N〉 where N =

A†A and (∆N)
2

=
〈

(N − 〈N〉)2
〉
. In order to relate

number operator to the total noise of quantum state, let
us use the Schwartz inequality,
|〈(X1 − 〈X1〉) (N − 〈N〉)〉|2 ≤ (13)〈

(X1 − 〈X1〉)2
〉〈

(N − 〈N〉)2
〉
≤ (∆X1)

2
(∆N)

2
.

This implies that
(∆X1)

2
(∆N)

2 ≥ |〈(X1 − 〈X1〉) (N − 〈N〉)〉|2 ≥
1

4
|〈[X1, N ]〉|2 ≥ 1

4
|〈X2〉|2 , (14)

where [X1, N ] = iX2.
Similarly

(∆X2)
2

(∆N)
2 ≥ 1

4
|〈X1〉|2 . (15)

From Eqs. (14) and (15), we have

4 (∆N)
2

[(∆X1)
2

+ (∆X2)
2
] ≥ 〈X1〉2 + 〈X2〉2 . (16)

Using Eq. (2) and simplifying, we get[
4 (∆N)

2
+ 1
] [

(∆X1)
2

+ (∆X2)
2
]
≥
〈
N +

1

2

〉
. (17)

Therefore, the total noise in quantum state in terms of
number operator is

TN =
[
(∆X1)

2
+ (∆X2)

2
]
≥

〈
N + 1

2

〉[
4 (∆N)

2
+ 1
] . (18)

From Eq. (18) it is clear that when (∆N)
2 decreases, the

total noise must increase.

3. Squeezing, sub-Poissonian and total noise
in fundamental mode in DSWM process

In this model, the process involving absorption of three
pump photons of frequency ω1 each, going from state |1〉
to state |2〉 and emission of two probe photons from state
|2〉 to state|3〉 with frequency ω2 each. The atomic system
returns to its original state by emitting one signal photon
of frequency ω3 from |3〉 to |1〉 as shown in Fig. 1.

The Hamiltonian for this process is as follows
(} = 1):
H = ω1a

†a+ ω2b
†b+ ω3c

†c+ g
(
a3b†2c† + a†3b2c

)
, (19)

where a†(a), b†(b) and c†(c) are the creation (annihila-
tion) operators of the A, B, and C modes, respectively,
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Fig. 1. Degenerate six-wave interaction model [45].

and g is the coupling constant between the two modes
per second. A, B, and C are slowly varying operators for
the three modes at ω1, ω2, and ω3, which are defined by
A = a exp(iω1t), B = b exp(iω2t) and C = c exp(iω3t),
associated with the relation 3ω1 = 2ω2 + ω3.

The Heisenberg equation of motion for mode A is

Ȧ =
∂A

∂t
+ i [H,A] . (20)

Using (19) in (20), we obtain
Ȧ = −3igA†2B2C. (21)

Similarly, we obtain the relations for Ḃ and Ċ as
Ḃ = −2igA3B†C† and Ċ = − igA3B†2. (22)

Expanding A(t) using Taylor’s series expansion by
assuming the short-interaction of wave with the medium
and retaining up to |gt|2, we obtain

Ȧ (t) = A− 3igtA†2B2C +
3

2
g2t2(6A†A2B†2B2C†C

+6AB†2B2C†C − 4A†2A3B†BC†C − 2A†2A3C†C

−A†2A3B†2B2 − 4A†2A3B†B − 2A†2A3). (23)
The real quadrature component for squeezing of field
amplitude in fundamental mode A is given as

X1A(t) =
1

2

[
A(t) +A†(t)

]
(24)

For spontaneous interaction, we consider the quantum
state as a product of coherent state for the fundamental
mode A and the vacuum state for the mode B and C,
that is
|ψ〉 = |α〉A |0〉B |0〉C , (25)

where α is the complex amplitude of the fundamental
mode. Using (23)–(25), we obtain the expectation value
as

〈ψ|X2
1A(t) |ψ〉 =

1

4

[
α2 + α∗2 + 2 |α|2 + 1− 6g2t2(α2 |α|4

+α2 |α|2 + α∗2 |α|4 + α∗2 |α|2 + 2 |α|6
]
, (26)

〈ψ|X1A(t) |ψ〉2 =
1

4

[
α2 + α∗2 + 2 |α|2 − 6g2t2(α2 |α|4

+α∗2 |α|4 + 2 |α|6
]
. (27)

Therefore,
[∆X1A(t)]

2
=
〈
X2

1A(t)
〉
− 〈X1A(t)〉2 =

1

4

[
1− 6g2t2(α2 |α|2 + α∗2 |α|2)

]
, (28)

[∆X1A(t)]
2 − 1

4
= −3g2t2 |α|4 cos 2θ, (29)

where θ is the phase angle, with α = |α| e iθ and α∗ =
|α| e− iθ.

The right hand side of the expression (29) is negative,
indicating that squeezing will occur in the first-order am-
plitude in the fundamental mode in degenerate six-wave
mixing process for which cos 2θ > 0 for spontaneous in-
teraction.

Spontaneous emission is an effect caused by the cou-
pling of the atom to the vacuum state. Analogously, stim-
ulated emission is caused by the coupling of the atom to
the other states of the field. To study squeezing in stimu-
lated interaction in DSWM process we assume an initial
quantum state as a product of coherent states |α〉 for the
fundamental mode A, |β〉 for the Stokes mode B and vac-
uum state |0〉 for the mode C,
|ψ〉 = |α〉A |β〉B |0〉C . (30)

We obtain expectation value as

〈ψ|X1A(t) |ψ〉2 =
1

4

[
α2 + α∗2 + 2 |α|2 − 3g2t2 (31)

×
(
α2 |α|4 + α∗2 |α|4 + 2 |α|6

)
×
(
|β|4 + 4 |β|2 + 2

)]
,

〈ψ|X2
1A(t) |ψ〉 =

1

4

[
α2 + α∗2 + 2 |α|2 + 1− 3g2t2

×
(
α2 |α|4 + α2 |α|2 + α∗2 |α|4 + α∗2 |α|2 + 2 |α|6

)
×
(
|β|4 + 4 |β|2 + 2

)]
. (32)

Therefore,

[∆X1A(t)]
2 − 1

4
=

−3

2
g2t2 |α|4

(
|β|4 + 4 |β|2 + 2

)
cos 2θ. (33)

The right hand side of Eq. (33) is always negative, show-
ing the existence of squeezing in the first-order amplitude
in the fundamental mode in stimulated DSWM process
for those value of θ for which cos 2θ > 0. The factor
(|β|4 + 4 |β|2 + 2) in Eq. (33) is the effect of stimulated
interaction.

The results show the presence of squeezing in funda-
mental mode in DSWM process in the first-order. To
study normal (first-order) squeezing, we denote the right
hand side of Eq. (33) by Sx. Taking |gt|2 = 10−8 and
θ = 0, the variations of Sx is shown in Fig. 2. We have
used θ = 0 to get maximum squeezing.

The steady fall of the curve shows an increase in the
degree of squeezing with number of photons. Figure 2
shows that the squeezing increases nonlinearly with |α|2
which is directly dependent upon the number of photons.
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Fig. 2. Variation of the first-order spontaneous (|β|2 =

0) and stimulated squeezing Sx with |α|2 (when |gt|2 =
10−8 and θ = 0).

Further, in stimulated process squeezing also increases
with |β|2 that is the photon number in B mode. This con-
firms that the squeezed states are associated with large
number of photons.

Further the total noise in this process can be
measured as

(TN )x ≥ [∆X1A(t)]
2

+
1

4 [∆X1A(t)]
2 ≥

1

4
− 3g2t2 |α|4 cos 2θ +

1

1− 12g2t2 |α|4 cos 2θ
. (34)

The expression on the left-hand side of the above inequal-
ity reaches a minimum when ∆X1 = 1

2 . The value of
∆X1 indicates the classical region. For 0 < ∆X1 <

1
2 , as

∆X1 decreases TN increases.
The variation of first-order squeezing in terms of total

noise with |α|2 is shown in Fig. 3.

Fig. 3. Variation of total noise (TN ) in quantum state
with |α|2 (when |gt|2 = 10−8 and θ = 0) (dashed line:
first-order (TN )x and solid line: second-order (TN )y).

Using (23) and (25), the second order amplitude is ex-
pressed as

A2(t) = A2 − 6g2t2(A†2A4 +A†A3)

and A†2(t) = A†2 − 6g2t2(A†4A2 +A†3A). (35)

For second-order squeezing, the real expectation values
for the fundamental mode is expressed as

Y1A(t) =
1

2

[
A2(t) +A†2(t)

]
. (36)

Using (25) and (35) in (36), we get the expectation value
in spontaneous degenerate six-wave mixing process as

〈ψ|Y1A(t) |ψ〉2 =
1

4

[
α4 + α∗4 + 2 |α|4 − 12g2t2(α4 |α|4

+α4 |α|2 + α∗4 |α|4 + α∗4 |α|2 + 2 |α|8 + 2 |α|6
]

(37)

〈ψ|Y 2
1A(t) |ψ〉 =

1

4

[
α4 + α∗4 + 2 |α|4 + 4 |α|2 + 2

−12g2t2(α4 |α|4 + 3α4 |α|2 + 2α4 + α∗4 |α|4 (38)

+3α∗4 |α|2 + 2α∗4+2 |α|8 +10 |α|6 +18 |α|4 +6 |α|2
]
.

Therefore,
[∆Y1A(t)]

2
=
〈
Y 2
1A(t)

〉
− 〈Y1A(t)〉2 =

1

4

[
4 |α|2 + 2− 24g2t2(α4 |α|2 + α4 + α∗4 |α|2 + α∗4

+4 |α|6 + 9 |α|4 + 3 |α|2
]
. (39)

Using Eq. (25) and then the number of photon in mode
A may be expressed as

N1A(t) = A†(t)A(t) = A†A− 6g2t2A†3A3. (40)
Then, we have〈

N1A(t) +
1

2

〉
=

[
|α|2 +

1

2
− 6g2t2 |α|6

]
. (41)

Subtracting (41) from (39), we get

[∆Y1A(t)]
2 −

〈
N1A(t) +

1

2

〉
= (42)

−6g2t2
[
2 cos 4θ

(
|α|4 + |α|6

)
+3 |α|6 +9 |α|4 +3 |α|2

]
.

Using initial condition (30), we obtain squeezing for the
stimulated process as

[∆Y1A(t)]
2−
〈
N1A(t)+

1

2

〉
=−3g2t2

[
2 cos 4θ

(
|α|4 + |α|6

)
+3 |α|6 +9 |α|4 +3 |α|2

] (
|β|4 + 4 |β|2 + 2

)
. (43)

The right hand side of Eqs. (42) and (43) are negative
for all values of θ for which cos 4θ > 0 and thus shows
the existence of squeezing in the second order of the field
amplitude in spontaneous and stimulated under short-
time approximation. The factor (|β|4 + 4 |β|2 + 2) in
Eq. (43) is the effect of stimulated interaction.

The results show the presence of squeezing in fun-
damental mode in DSWM process in second-order. To
study higher-order (second-order) squeezing, we denote
the right hand side of Eq. (43) by Sy. Taking |gt|2 = 10−8

and θ = 0, the variations of Sy is shown in Fig. 4.
It is clear from the plot that second-order squeezing

increases nonlinearly with |α|2. Thus, the degree of
squeezing is directly dependent on the photon number in
fundamental mode. Further, in stimulated case squeez-
ing also increases with |β|2, that is the photon number
in B mode.
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Fig. 4. Variation of the second-order spontaneous
(|β|2 = 0) and stimulated squeezing Sy with |α|2 (when
|gt|2 = 10−8 and θ = 0).

A comparison between Figs. 2 and 4 shows greater
noise reduction in second-order than in first-order, hav-
ing same number of photons.

A comparison between results for spontaneous and
stimulated process shows the occurrence of a multiplica-
tion factor (|β|4+4 |β|2+2), which tells that squeezing in
the fundamental mode in stimulated interaction is greater
than corresponding squeezing in spontaneous interaction
and also shows that maximum squeezing will occur when
only θ → 0 and minimum squeezing for θ → π/2 and
θ → π/4, respectively, for first and second-order.

Further the total noise in terms of second-order squeez-
ing,

(TN )y ≥
〈
N1A(t) + 1

2

〉
4 [∆Y1A(t)]

2
+ 1
≥ |α|2 +

1

2
− 6g2t2 |α|6

×
{

4 |α|2 + 3− 24g2t2
[(
|α|4 + |α|6

)
2 cos 4θ

+4 |α|6 + 9 |α|4 + 3 |α|2
]}−1

. (44)

From Eq. (44), we see that for fixed 〈N〉 as [∆Y (t)]
2

decreases, the total noise must increase.
The variation of second-order squeezing in terms of

total noise with |α|2 is shown in Fig. 3. For |β|2 = 0
corresponds to spontaneous process. The steady increase
of the curves (Fig. 3) shows that the total noise increases
with increase of the number of photons (|α|2). It infers
that the depth of nonclassicality directly depends on the
large number of photons. This also suggests that the
more squeezed the state is, the greater is its total noise.

A comparison between figures shows greater total noise
and hence greater squeezing in second-order than in first-
order, having the same number of photons. The re-
sult agrees with the result of Hillery [42] that the maxi-
mum total noise is possible in higher-order (second-order)
squeezing. It again infer that the more squeezed the state
is, the greater is its total noise.

Using (25) and (40), the statistics of fundamental
mode in degenerate six-wave mixing is found to be sub-
Poissonian, as

[∆N1A(t)]
2 − 〈N1A(t)〉 = −30g2t2 |α|6 . (45)

For studying sub-Poissonian photon statistics nature in
nonclassical state, let us denote the right-hand side of
Eq. (45) by Sn. Taking |gt|2 = 10−8, the variations of
Sn with |α|2 is shown in Fig. 5.

Figure 5 shows that the sub-Poissonian statistics prop-
erties of light is directly proportional to the number
of photons in fundamental mode A i.e. sub-Poissonian
statistics of light increases with increase of |α|2. Thus,
the degree of sub-Poissonian photon statistics is also as-
sociated with large number of photons.

Fig. 5. Variation of sub-Poissonian states (Sn with |α|2

(when |gt|2 = 10−8 and θ = 0).

Hence, the total noise related to number operator

(TN )n ≥
〈
N1A(t) + 1

2

〉
4 [∆N1A(t)]

2
+ 1
≥

|α|2 + 1
2 − 6g2t2 |α|6

4 |α|2 + 1− 144g2t2 |α|6
. (46)

From above Eq. (46), it is evident that for fixed
〈N〉 as [∆N (t)]

2 decreases, then TN must increase.
The variation of total noise in terms of number op-
erator (TN )n with |α|2 is shown in Fig. 6. The

Fig. 6. Variation of total noise (TN )n in sub-
Poissonian state with |α|2 (when |gt|2 = 10−8 and
θ = 0).
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steady increase of the curves (Fig. 6) shows the total
noise increases with increase of the number of photons
|α|2. Therefore, as state becomes more sub-Poissonian
[∆N (t) / 〈N〉 = decreasing] its total noise increases.

4. Conclusions

The results show the presence of squeezing in funda-
mental mode in DSWM process in first-order as well as
in second-order. A comparison between results of spon-
taneous and stimulated processes shows the occurrence
of a multiplication factor (|β|4 + 4 |β|2 + 2), which tells
that squeezing in the fundamental mode in stimulated
process is greater than corresponding squeezing in spon-
taneous process and show that maximum squeezing will
occur when θ → 0.

A comparison of squeezing in spontaneous interaction
with that of stimulated in DSWM process shows larger
degree of squeezing in the stimulated interaction for the
same order. Thus it may be inferred that higher de-
gree of squeezing is associated with higher degree of non-
linearity of the optical process. It also show that the
squeezing increases nonlinearly with |α|2, which is di-
rectly dependent upon the number of photons. This con-
firms that the squeezed states are associated with large
number of photons. Hence higher-order squeezing makes
it possible to achieve significantly larger noise reduction
than ordinary (or second-order) squeezing. This also es-
tablishes the fact that processes with higher-order non-
linearity is more suitable for generation of squeezed light.

It is found that the depth of nonclassicality is more
in second order than first-order. Hence second-order will
give more squeezed laser light than first-order.

On comparing curves in Fig. 3, it is concluded that
greater total noise and hence greater squeezing exists in
second-order than in first-order, having same number of
photons. The result agrees with the result of Hillery [42].
Hence the maximum total noise is possible in higher-
order (second-order) squeezing. It infers that the more
squeezed the state is, the greater is its total noise in the
system.

Figure 5 shows that the sub-Poissonian statistics prop-
erties of light is directly proportional to number of pho-
tons in the fundamental mode i.e. sub-Poissonian states
of light increases with increase of |α|2. Thus, the degree
of sub-Poissonian photon statistics is also associated with
large number of photons.

Figure 6 shows that the total noise increases with in-
crease of the number of photons |α|2. Therefore, as state
becomes more sub-Poissonian, its total noise increases.

These results suggest that the desired degree of squeez-
ing, sub-Poissonian and total noise can be obtained by us-
ing short interaction time and number of photons present
in the radiation field before interaction in the system.
Hence, the total noise of a quantum state can be mea-
sured the depth of nonclassicality i.e. more nonclassical
a state (squeezing and sub-Poissonian) of the field in any
system.

Acknowledgments

We would like to thank the referees for his comments
and valuable suggestions.

References

[1] J.N. Hollenhorst, Phys. Rev. D 19, 1669 (1979).
[2] C.M. Caves, Phys. Rev. D 23, 1693 (1981).
[3] D.F. Walls, Nature 306, 141 (1983).
[4] R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz,

J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[5] R.M. Shelby, M.D. Levenson, S.H. Perlmutter,

R.G. DeVoe, D.F. Walls, Phys. Rev. Lett. 57, 691
(1986).

[6] L.A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Phys. Rev.
Lett. 57, 2520 (1986).

[7] R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987).
[8] M.C. Teich, B.E.A. Saleh, Quant. Opt. 1, 153 (1989).
[9] J. Perina, Quantum Statistics of Linear and Nonlinear

Optical Phenomena, Kluwer, Dordrecht 1991, Chs. 9
and 10.

[10] L. Mandel, Phys. Scr. T 12, 34 (1986).
[11] V.V. Dodonov, J. Opt. B Quant. Semiclass. Opt. 4,

R1 (2002).
[12] B.E.A. Saleh, M.C. Teich, Phys. Rev. Lett. 58, 2656

(1987).
[13] K. Wódkiewicz, J. Mod. Opt. 34, 941 (1987).
[14] H.J. Kimble, D.F. Walls, J. Opt. Soc. Am. B 4, 1450

(1987).
[15] H.P. Yuen, J.H. Shapiro, IEEE Trans. Inf. Theory

24, 657 (1978).
[16] C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev.

Lett. 68, 557 (1992).
.

[17] J. Kempe, Phys. Rev. A 60, 910 (1999).
[18] V.V. Dodonov, M.A. Man’ko, V.I. Man’ko, A. Vour-

das, J. Russ. Laser Res. 28, 404 (2007).
[19] U.L. Andersen, T. Gehring, C. Marquardt, G. Leuchs,

Phys. Scr. 91, 053001 (2016).
[20] L. Mandel, Opt. Commun. 42, 437 (1982).
[21] S. Kielich, R. Tanas, R. Zawodny, J. Opt. Soc. Am.

B 4, 1627 (1987).
[22] J. Perina, V. Perinova, C. Sibilia, M. Bertolotti, Opt.

Commun. 49, 285 (1984).
[23] M.S.K. Razmi, J.H. Eberly, Opt. Commun. 76, 265

(1990).
[24] D.K. Giri, P.S. Gupta, J. Opt. B Quant. Semiclass.

Opt. 6, 91 (2004).
[25] D.K. Giri, P.S. Gupta, Opt. Commun. 221, 135

(2003).
[26] J. Perina, J. Krepelka, J. Mod. Opt. 38, 2137 (1991).
[27] A. Kumar, P.S. Gupta, Quant. Semiclass. Opt. 7,

835 (1995).
[28] A. Kumar, P.S. Gupta, Quant. Semiclass. Opt. 8,

1053 (1996).
[29] D.K. Giri, P.S. Gupta, J. Mod. Opt. 52, 1769 (2005).
[30] C.K. Hong, L. Mandel, Phys. Rev. Lett. 54, 323

(1985).

http://dx.doi.org/10.1103/PhysRevD.19.1669
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1038/306141a0
http://dx.doi.org/10.1103/PhysRevLett.55.2409
http://dx.doi.org/10.1103/PhysRevLett.57.691
http://dx.doi.org/10.1103/PhysRevLett.57.691
http://dx.doi.org/10.1103/PhysRevLett.57.2520
http://dx.doi.org/10.1103/PhysRevLett.57.2520
http://dx.doi.org/10.1080/09500348714550721
http://dx.doi.org/10.1088/0954-8998/1/2/006
http://dx.doi.org/10.1007/978-94-011-2400-3
http://dx.doi.org/10.1007/978-94-011-2400-3
http://dx.doi.org/10.1088/0031-8949/1986/T12/005
http://dx.doi.org/10.1088/1464-4266/4/1/201
http://dx.doi.org/10.1088/1464-4266/4/1/201
http://dx.doi.org/10.1103/PhysRevLett.58.2656
http://dx.doi.org/10.1103/PhysRevLett.58.2656
http://dx.doi.org/10.1103/PhysRevLett.58.2656
http://dx.doi.org/10.1364/JOSAB.4.001450
http://dx.doi.org/10.1364/JOSAB.4.001450
http://dx.doi.org/10.1109/TIT.1978.1055958
http://dx.doi.org/10.1109/TIT.1978.1055958
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevA.60.910
http://dx.doi.org/10.1007/s10946-007-0031-6
http://dx.doi.org/10.1088/0031-8949/91/5/053001
http://dx.doi.org/10.1016/0030-4018(82)90283-8
http://dx.doi.org/10.1364/JOSAB.4.001627
http://dx.doi.org/10.1364/JOSAB.4.001627
http://dx.doi.org/10.1016/0030-4018(84)90193-7
http://dx.doi.org/10.1016/0030-4018(84)90193-7
http://dx.doi.org/10.1016/0030-4018(90)90297-7
http://dx.doi.org/10.1016/0030-4018(90)90297-7
http://dx.doi.org/10.1088/1464-4266/6/1/015
http://dx.doi.org/10.1088/1464-4266/6/1/015
http://dx.doi.org/10.1016/S0030-4018(03)01464-0
http://dx.doi.org/10.1016/S0030-4018(03)01464-0
http://dx.doi.org/10.1080/09500349214551051
http://dx.doi.org/10.1088/1355-5111/8/5/010
http://dx.doi.org/10.1088/1355-5111/8/5/010
http://dx.doi.org/10.1080/09500340500073065
http://dx.doi.org/10.1080/09500340500073065
http://dx.doi.org/10.1103/PhysRevA.32.974
http://dx.doi.org/10.1103/PhysRevLett.54.323
http://dx.doi.org/10.1103/PhysRevLett.54.323


1114 B. Kumar Choudhary, D.K. Giri

[31] C.K. Hong, L. Mandel, Phys. Rev. A 32, 974 (1985).
[32] M. Hillery, Opt. Commun. 62, 135 (1987).
[33] M. Hillery, Phys. Rev. A 36, 3796 (1987).
[34] M. Hillery, Phys. Rev. A 45, 4944 (1992).
[35] You-bang Zhan, Phys. Lett. A 160, 498 (1991).
[36] J. Perina, V. Perinova, J. Kodousek, Opt. Commun.

49, 210 (1984).
[37] Y. Kim, T.H. Yoon, Opt. Commun. 212, 107 (2002).
[38] H. Prakash, D.K. Mishra, J. Phys. B At. Mol. Opt.

Phys. 39, 2291 (2006).
[39] D.K. Mishra, Opt. Commun. 283, 3284 (2010).

[40] R. Prakash, A.K. Yadav, Opt. Commun. 285, 2387
(2012).

[41] B.L. Schumaker, Phys. Rep. 135, 317 (1986).
[42] M. Hillery, Phys. Rev. A 39, 2994 (1989).
[43] P. Gupta, A. Pathak, Optik Int. J. Light Electron

Opt. 121, 1507 (2010).
[44] S. Gill, Sunil Rani, Nafa Singh, Int. J. Opt. 2012, 1

(2012).
[45] Sunil Rani, Jawahar Lal, Nafa Singh, Int. J. Opt.

2011, 1 (2011).

http://dx.doi.org/10.1103/PhysRevA.32.974
http://dx.doi.org/10.1016/0030-4018(87)90097-6
http://dx.doi.org/10.1103/PhysRevA.36.3796
http://dx.doi.org/10.1103/PhysRevA.45.4944
http://dx.doi.org/10.1016/0375-9601(91)91055-I
http://dx.doi.org/10.1016/0030-4018(84)90266-9
http://dx.doi.org/10.1016/0030-4018(84)90266-9
http://dx.doi.org/10.1016/S0030-4018(02)01981-8
http://dx.doi.org/10.1088/0953-4075/39/9/014
http://dx.doi.org/10.1088/0953-4075/39/9/014
http://dx.doi.org/10.1016/j.optcom.2010.04.007
http://dx.doi.org/10.1016/j.optcom.2012.01.007
http://dx.doi.org/10.1016/j.optcom.2012.01.007
http://dx.doi.org/10.1016/0370-1573(86)90179-1
http://dx.doi.org/10.1103/PhysRevA.39.2994
http://dx.doi.org/10.1016/j.ijleo.2009.02.022
http://dx.doi.org/10.1016/j.ijleo.2009.02.022
http://dx.doi.org/10.1155/2012/431826
http://dx.doi.org/10.1155/2012/431826
http://dx.doi.org/10.1155/2011/629605
http://dx.doi.org/10.1155/2011/629605

