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Crystallization in Topological Flat Bands in Thin Torus Limit
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We study a crystallization on partially filled topological flat bands of honeycomb lattice in the thin torus
limit. We identify the crystallization by looking at the pair correlation densities and determine the strength of
the crystallization from their Fourier transform. We observed that the crystallization depends on the parity of
the denominator of the filling factor. The crystallization is weakly affected by finite size effects and its strength
increases with decrease of a particle density.
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1. Introduction

In recent years, the possibility of realization of quan-
tum Hall effect on a lattice without external magnetic
field has been intensely studied. Systems which exhibits
non-zero Hall conductance and preserving lattice transla-
tional symmetry are known as the Chern insulators, the
idea introduced by Haldane [1]. The Chern insulators are
characterized by a nonzero value of an integer topological
invariant named the Chern number [2], which quantized
the Hall conductivity. A proposition of realization of the
Chern insulators on cold atom systems [3, 4] was recently
confirmed experimentally [5–8]. Nearly flat bands with
nonzero Chern number can host the correlated phases
named fractional Chern insulators (FCI) and were exten-
sively studied numerically [9–19]. These are lattice ana-
logues to fractional quantum Hall effect (FQHE) states
and the adiabatic continuity between FCI and FQHE was
shown [20, 21]. FQHE [22, 23] and FCI [24–27] have been
also studied in a thin torus limit sheding some light on
the origin of the appearance of liquid phases in 2D case.

At the low density limit and long range two-body inter-
action, liquid phases compete with the Wigner crystals
(WC) [28–32]. Recently, we have shown that WC is a true
ground state on a nearly flat band of Chern insulator in
the limit of long range interaction and at sufficiently low
densities [33]. In this work, we investigate the ground
state properties of a system with interacting electrons on
partially filled topological flat bands on honeycomb lat-
tice in the thin torus limit with long range interaction.
We use the exact diagonalization method to obtain the
many-body ground state and analyze the crystallization
strength using the pair correlation density (PCD) and its
Fourier transform. We compare results for even and odd
filling factors, including a scaling to a thermodynamic
limit with a particle number.
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2. Model and methodology

We consider the Haldane model of the Chern insulator
on honeycomb lattice [1]. This model is described by the
following Hamiltonian:

H = t
∑
〈i,j〉

a†iaj + t2
∑
〈〈i,j〉〉

e iφi,ja†iaj , (1)

where ai (a+i ) are annhilation (creation) operators on lat-
tice sites, t and t2 are nearest and next-nearest neighbor
hoppings, respectively, and a complex phase factor e iφi,j

has the following property: e iφi,j = e− iφj,i and is re-
sponsible for nontrivial topology of energy bands. To
obtain nontrivial flat bands we have chosen the following
values of parameters: t = −1, t2 = 0.31, φ = 0.65.

We populate electrons on the lowest band on the pla-
quettes withNx andNy unit cells in the lattice vectors di-
rections, respectively, and periodic boundary conditions.
We fix one of the size of each plaquettes to two unit cells,
Nx = 2, because this is the nearest situation to the thin
torus limit. We consider the screened Coulomb interac-
tion between electrons

V =
∑
i,j

exp(p− pri,j)
ri,j

ninj , (2)

where ri,j is the distance between sites i and j, ni (nj) is
the electron density on the site i (j), and p is the strength
of screening, which we choose to be p = 0.3. The low
energy spectrum of considered system is obtained using
exact diagonalization method for different filling factors,
ν = N

NxNy
, where N is a number of particles.

To characterize the crystallization of the ground state
|ψ〉 we use PCD

G(i, j) =
〈ψ| a†ia

†
jajai |ψ〉

〈ψ| a†jaj |ψ〉
. (3)

PCD is proportional to the probability of finding a
particle at a site j under a condition that there is a
fixed particle at a site i. We make PCD continuously by
replacing every site by the Gaussian

Gi(r) =

N∑
j

G(i, j)
1

2πσ
exp

(
r − rj
2σ

)
, (4)

(934)
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where r is the vector connecting atom i and a given point
in space and σ is the width of the Gaussian which we
chose to be σ = 0.5. We measure strength of the crystal-
lization by taking the Fourier transform. We define the
strength of the crystallization S as a value of the highest
Fourier peak excluding the peak for the zero spatial fre-
quencies divided by the number of particles. The details
of the methodology are described in Ref. [33].

3. Results

We calculate the ground state for many longitudinal
plaquettes with filling factors from ν = 1/4 to ν = 1/11.
By looking at PCD we have found that the ground state
is strongly crystallized for all fillings. We can observe two
patterns of that crystallization, the first one in a form of
stripes (localization only in a longitudinal direction) and
the second in a form of localized particles (localization in
both directions), with the example shown in Fig. 1. This
effect is connected with the parity of the denominator of
the filling factor: stripes are present for an even denom-
inator, and full localization for odd denominators of the
filling factor. This even-odd effect is observed indepen-
dently of the number of particles in the system.

Fig. 1. The PCD of the ground state for the system
withN = 6 particles for plaquettesNx×Ny = 30×2(ν =
1/10) (a) and Nx ×Ny = 27× 2 (ν = 1/9) (b) and their
Fourier transforms in (c) and (d), respectively.

The stability of the crystallization with increasing
number of particles is shown in Fig. 2. For system sizes
with 1/N < 0.3 there is no visible change in crystalliza-
tion strength. One can also notice that it increases with
decrease of the particle density, considering separately se-
ries with even and odd denominators of the filling factor,
full and empty symbols respectively in Fig. 2.

Fig. 2. The strength of the crystallization S as a func-
tion of 1/N , where N is the number of particles. Each
plaquette has the following size: Nx × 2, where Nx de-
pends on the filling factor ν and the number of particles
N . The strength of crystallization is stable with in-
crease of number of particles. The dashed line indicates
plaquettes with N = 6 particles.

Fig. 3. The strength of the crystallization S as a func-
tion of filling factor ν (n in a legend is some integer) for
plaquettes with N = 6 particles, indicated by a dashed
line in Fig. 2. Two data series for the filling factors with
even denominator (red line) and with odd denominator
(green line) show nearly linear dependence.

To emphasize an even-odd effect, the strength of the
crystallization as a function of the filling factor for these
two series for a particle number N = 6 is shown in Fig. 3.
The crystallization increases monotonically, nearly lin-
early, for each series when filling factor decreases. In
general, the crystallization of stripes (even denominator)
is stronger, in comparison to fully localized particles (odd
dominator). The difference between two series disappears
with lowering the filling factor.
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4. Conclusions

We have shown that the many-body ground state of the
system on topological flat bands with screened Coulomb
interaction in a thin torus limit leads to crystallization
for filling factors below ν < 1/4. Two types of the crys-
tallization are observed, for even and odd denominators
of a filling factor. A partially filled band with an even
denominator filling factor forms stripes, while full local-
ization occurs for odd denominators. The crystalliza-
tion is stable for different system sizes thus expected in
a thermodynamic limit. The crystallization strength in-
creases with decrease of a filling factor, and is stronger
for stripes (even denominator), but the difference with
fully localized particles becomes less significant for lower
filling factors.
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