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Excitons in Asymmetric Nanostructures: Confinement Regime
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Quantum confinement of electrons and holes in semiconductor nanostructures results in quantization of their
energy levels with level spacing generally decreasing with the confinement length. The relation between these
splittings and the energy of the electron–hole Coulomb interaction may serve as a measure of exciton confinement
regime. We consider theoretically strongly in-plane asymmetric nanostructures, like InAs/AlGaInAs elongated
quantum dots. Based on optical properties, we find a possible indication of coexistence of different confinement
regimes for the two bright exciton states that couple to light polarized along the two nonequivalent axes distin-
guished by the structural asymmetry. Exciton lifetimes and their distinct dependences on energy derived here for
the two confinement regimes are in good agreement with those of recently measured double exponential photolu-
minescence decays. Additionally, for highly elongated dots, one of the states exhibits properties typical for the
weak confinement regime, which may have a significant impact on spin relaxation processes.
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1. Introduction

The impact of the quantum confinement strength, de-
fined by the width and depth of potential-energy well for
carriers, on properties of correlated electron–hole pairs
(excitons) was the subject of intensive theoretical re-
search [1–3]. This led to formulation of the general clas-
sification into three confinement regimes (CRs) for exci-
tons: strong, intermediate, and weak. This division is re-
lated to the relation between the confinement energy and
the electron–hole Coulomb interaction energy. The mea-
sure of the former is the single-particle energy-level spac-
ing, for the two lowest-energy states referred to as the s–p
splitting ∆

(e/h)
sp , where the superscript stands for elec-

trons/holes. These splittings are strongly dependent on
the characteristic length of quantum confinement, which
in the case of semiconductor nanostructures is simply de-
fined by their size. The other factor, the energy of the
Coulomb attraction between the electron and the hole
trapped together in the nanostructure volume, ∆C , is less
dependent on the confinement length. Therefore, with
varying nanostructure size a transition from the strong,
∆

(e/h)
sp � ∆C , through intermediate, ∆(h)

sp < ∆C < ∆
(e)
sp ,

to the weak CR, ∆(e/h)
sp � ∆C , is realized.

Various CRs are characterized by distinct exciton opti-
cal properties. In the case of strong CR, mixing of single-
particle states by Coulomb interaction is negligible and
the exciton ground state is composed almost only of elec-
tron and hole ground states. In contrast, the weaker the
confinement, the bigger the admixture of higher-energy
single-particle states. Radiative recombination of such a
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superposition is then enhanced and its rate follows a de-
pendence on the transition energy (dispersion) different
from that met in strong CR.

Here, we investigate nanostructures strongly elongated
in one of the in-plane directions, which may be exempli-
fied by an application-relevant family of self-assembled
InAs/AlGaInAs quantum dots (QDs), so-called quantum
dashes [4]. We focus on conditions of exciton confinement
resulting from such a geometry and, within a very simple
harmonic confinement model, we find that they cannot
be assigned to a single CR.

2. Confinement asymmetry

Originally [1], strong and weak exciton CRs were de-
fined for spherically symmetric QDs in terms of the re-
lation between the dot radius and the bulk exciton Bohr
radius, aB, while the intermediate CR was introduced
for the case of high ratio of effective masses. This is di-
rectly related to the definition stated above in terms of
energy, not only for spherical, but also for common QDs
with lower, approximately cylindrical symmetry, if a 2D
Bohr radius a2D ≈ aB/2 is used. In such structures, the
z-axis confinement defines the optical transition energy,
while carrier states have the form of consecutive shells
in the x–y plane very well described by the harmonic
confinement model [5–7]. While for cylindrical symme-
try eigenstates of radial harmonic oscillator are expected,
in the case of QDs made of noncentrosymmetric semi-
conductors, strain-induced piezoelectric field breaks the
symmetry. Then, one deals with modest splitting be-
tween states forming two axis-wise shells, which does not
affect exciton properties much.

However, here we deal with significant structural asym-
metry that has pronounced consequences [8, 9]. In
Fig. 1, we present schematically the geometry of investi-
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gated elongated QDs. Based on typical self-assembly of
InAs/AlGaInAs quantum dashes [4], we fix the elonga-
tion (length L) along the v ‖ [11̄0] axis. L may be a few
times bigger than the width W (along axis h ‖ [110]),
which is expressed in terms of the in-plane aspect ratio
η = L/W . The height H is typically in the range of
1.8–3.2 nm and the cross-section geometry is fixed with
W/H ≈ 6. We assume the QD material to be 80% InAs
and use material constants as in Ref. [9].

Fig. 1. A schematic view of the system with basic pa-
rameters and polarization axes defined.

3. Theoretical considerations

To qualitatively assess the properties of excitons
in a highly asymmetric QD, we assume an axis-wise
anisotropic harmonic confinement with electron/hole po-
tential energy given by

Ve/h(r) =
1

2
me/h

∑
i=v,h,z

[
ω
(e/h)
i

]2
x2i , (1)

where ω(e/h)
i = ~/(me/hl

2
i ), me/h is the effective mass,

and li is the characteristic confinement length in the i
axis, typically a few times (Ni) smaller than the actual
QD size, which corresponds to

∏
i erf(Ni/2) of carrier

density localized within a box-like QD. Considering the
real geometry of investigated QDs and recently calculated
wave functions [9], we use: lv = L/4, lh = (W/2)/3 (divi-
sion by 2 due to the triangular shape), and lz = H/(2

√
2).

The resulting envelope wave functions are of the product
form

Ψnm(r) = ψn(x)ψm(y)ψ0(z), (2)
where ψn(xi) is the n-th eigenfunction of the 1D har-
monic oscillator along the axis xi and we assume no ex-
citations along z. Full eigenstates in the multi-band ap-
proach are then Ψnm(r) =

∑
µΨ

(µ)
nm(r) |µ〉, where |µ〉

are the zone-center Bloch functions [10], and µ runs over
the lowest conduction, heavy- (hh) and light-hole (lh) va-
lence bands. For simplicity, we neglect all band mixing
except the opposite-spin lh admixture to the hh ground
state (identical envelopes assumed). The corresponding
orbital energies are

E(α)
nm = ~ω(α)

v

(
n+

1

2

)
+~ω(α)

h

(
m+

1

2

)
+

1

2
~ω(α)

z , (3)

for α = e, h, which scales with the QD size as E(α)
nm −

E
(α)
0 ∝ n/L2 +m/W 2, where the ground-state energy is

E
(α)
0 = ~

∑
i ω

(α)
i /2 ' ~ω(α)

z /2 (as L2,W 2 � H2). Exci-
tations along each of the axes are equidistant in energy,
with spacing ∆

(α)
v/h = ~ωv/h, proportional to 1/L2 and

1/W 2, respectively. For a given aspect ratio η one has
thus ∆

(α)
h /∆

(α)
v = η2, so we deal with a dense ladder of

states with antinodes located along the v-axis sparsely
interspersed by those along the h-axis.

Given the 2D exciton Bohr radius a2D ≈ 14 nm and a
typical elongated QD with W = 18 nm and L = 80 nm,
we may initially notice thatW/2 < a2D < L/2, so assign-
ing a single CR based on this criterion fails. However,
treating the axes separately, one finds that they would
fall into different regimes. In terms of energy, for typi-
cal electron–hole Coulomb interaction ∆C ' 15 meV, we
find for both types of carriers that ∆

(α)
v < ∆C < ∆

(α)
h

(∆(e)
v ≈ 6 meV, ∆

(e)
h ≈ 270 meV, ∆

(h)
v ≈ 0.6 meV,

∆
(h)
h ≈ 26 meV). This may be expected to result in

considerable admixtures of states with antinodes located
along the QD (and lack of the other) in the exciton
ground state, which appears to be a manifestation of a
“mixed” CR.

The in-plane asymmetry leads also to the hh–lh sub-
band mixing [8, 11] with eigenstates Ψh,⇑′/⇓′

nm (r) ∝
Ψnm(r)(|⇑ / ⇓〉+ iε |↓ / ↑〉), where ⇑ / ⇓ and ↑ / ↓ stand
for the hh (m = ±3/2) and lh (m = ±1/2) states, re-
spectively, while ε ∈ R> may be up to a few % for highly
elongated QDs [9]. This changes the nominally circular
polarization of bright-exciton dipole moments into ellipti-
cal with major axes inclined towards the v axis for both
states. Including the anisotropy also in the electron–
hole exchange interaction [12], yields states that couple
to light polarized linearly along v and h axes with un-
equal oscillator strengths, fv > fh [9]. Such a difference
of lifetimes of two cross-polarized photoluminescence in-
tensities has recently been observed [13, 14] with signifi-
cant difference in dispersion of the two lifetimes [9].

We propose to interpret this in terms of two coexisting
CRs: strong for the state coupled to h-polarized light,
and weak for the other one. As already mentioned, one
expects more efficient recombination in the weak CR. Ad-
ditionally, the two dispersions should also vary. In the
dipole approximation, radiative lifetime is given by [15]:

τ =
6πε0m0c

3~2

ne2 fE2
X

, (4)

where n is the refractive index, f is the oscillator
strength, EX is the transition energy, and other symbols
stand for usual constants. In the strong CR the exciton
ground state is approximately given by the product of
electron and hole ground states, which yields

fSCR =
2

m0EX

∣∣∣∣∫
V

d3rΨh,⇑
00 rp̂Ψe,↓

00 (r)

∣∣∣∣2 =
ϑEP
2EX

, (5)

where p̂ is the momentum operator, EP is the Kane en-
ergy, and 0 ≤ ϑ ≤ 1 is the overlap of electron and hole en-
velopes. Substituted into Eq. (4), it gives a τSCR ∝ 1/EX
dispersion. On the other hand, one may estimate the os-
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cillator strength in the weak CR starting with the 2D
“bulk” case and replacing the quantum-well volume V
with the electron–hole overlap (QD) volume [15], here
estimated as VX ' LWH/2 = 3H2L,

f2D =
EP

2EX

V

πa22DH
−→ fWCR ∝

3EP
2πa22D

HL

EX
. (6)

For the ground state one has EX ' E(e)
0 + E

(h)
0 −∆C '

9~2/(2µH2), where µ−1 = m−1e +m−1h and we neglected
∆C � E

(e/h)
0 . Inserting this into Eq. (6) and then to

Eq. (4), we obtain τWCR ∝ 1/(L
√
EX), where L may

be treated as fixed, as it has almost no impact on the
transition energy.

In Fig. 2, we plot experimentally obtained radiative
lifetimes taken from Ref. [9] (symbols) along with lines
representing the two trends considered here (for ε = 0.05,
ϑ = 0.75, and L = 80 nm). The agreement seems rea-
sonable in view of the simplicity of the model we used
and may serve as a partial confirmation for the presence
of different CRs for the two bright exciton states. How-
ever, a further careful investigation of electron–hole in-
teractions in such elongated QDs is needed to determine
whether the two states actually differ in the amount of
higher-orbital admixtures.

Fig. 2. Dispersion of the two unequal exciton radiative
lifetimes: experimentally estimated values taken from
Ref. [9] (symbols) and theoretical curves obtained using
Eq. (5) (solid line) and Eq. (6) (dashed line).

4. Conclusions

We have investigated asymmetric semiconductor nano-
structures focusing on the CR for excitons. Strong asym-
metry leads to approximately independent sub-ladders
of energy states corresponding to carrier wave-function
antinodes placed along and across the axis of nanostruc-
ture elongation. Based on the approximation with an
axis-wise-asymmetric harmonic confinement and recent
numerical results obtained for realistic geometry of elon-
gated QDs, we have found a coexistence of different CRs
for excitons. By this we mean that level spacing of elec-
tron/hole excitations may be much higher than the en-
ergy of electron–hole Coulomb interaction in the case of
one of the two orthogonal in-plane axes, and lower for
the other one. Additionally, anisotropy in the electron–
hole exchange interaction fixes the polarization of opti-

cal transition for the two lowest-energy bright exciton
states along these two axes. Thus, one deals with exci-
tons that couple to light polarized linearly along the two
axes and behave according to the stronger or weaker CR.
We have shown that recently measured lifetimes of the
two states actually follow trends derived here for strong
and weak CRs. Apart from consequences exhibited in
optical properties, this may have a critical impact on,
e.g., carrier spin relaxation in such structures. While
the latter is typically suppressed in QDs, the partially
weak CR means unfrozen center-of-mass motion in the
v-axis, which should enable the Elliot–Yafet [16, 17] and
the D’yakonov–Perel’ [18] mechanisms. Indirect indica-
tion of enhanced spin relaxation in elongated QDs has
recently been reported [19]. Hence, a wider study of this
issue along a few topical paths is needed.
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