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1. Introduction

It is generally accepted that electronic devices can be
treated as open systems because they exchange both car-
riers and energy with connected contacts. Therefore,
a theoretical description of transport properties of such
systems requires some methods developed for analysis of
nonequilibrium states in the classical or quantum phase
space of position and momentum variables. Such pos-
sibility is created by the kinetic method based on the
integro-differential equation in the form [1]:
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where m∗ is the effective mass of carriers, %(x, p, t) is the
Wigner distribution function, I [%(x, p, t)] is the collision
integral, and W (x, k) is the nonlocal potential. Its form
is given by the formula
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where U(ξ) represents the potential energy of the carri-
ers. The transport equation given by Eq. (1) is usually
solved with the inflow boundary conditions determined
by the Fermi–Dirac distribution function or the supply
function, i.e. the Fermi–Dirac function integrated over
the transverse momentum [2]. However, a modified form
of the inflow boundary conditions has been recently pro-
posed in Ref. [3]. Results of this research clearly prove
that the transport properties of active region of a nanode-
vice cannot be analyzed independently of the contacts,
because the thermalization effect due to scattering in con-
tacts strongly reduces the electronic current through the
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considered nanosystem, regardless of the dissipative flow
of conduction electrons which is included in Eq. (1).

In this report we present a modified form of the supply
function which allows one to include the scattering pro-
cesses in the contacts and we solve the stationary form of
Eq. (1) in the classical limit using the proposed boundary
conditions. We also determine some transport character-
istics of homogeneous semiconductor device made of III–
V compound in CPP geometry and we investigate an in-
fluence of the boundary conditions on the characteristics.

2. Theory and model of the system

In the classical limit, the Wigner function can be
approximated by the classical distribution function
f(x, p, t) according to the formula [4]:∫
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In turn, the application of the gradient approximation
to the nonlocal potential given by Eq. (2) allows us to
reduce Eq. (1) to the Boltzmann form, namely
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The scattering integral is modeled within the relaxation
time approximation [5], i.e.

I [f(x, p)] = −f(x, p)− f0(x, p)

τ
, (5)

where f0(x, p) is the equilibrium distribution function,
τ is the relaxation time which characterizes the elastic
scattering processes of carriers on a set of randomly dis-
tributed δ-function dopants in the active region of the
device, within the assumed Gaussian model of disorder.
It means that the average disorder potential is equal to
zero, and the second cumulant of the potential — the
potential correlator is constant. Taking into account this
assumption we can write down the stationary Boltzmann
equation in the form
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p
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τ
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This equation is solved with the following inflow bound-
ary conditions [6]:

f(x = 0, p)
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where f
L(R)
therm (E(p)) are thermalized distribution func-

tions for the left (L) and right (R) contacts (as shown
in Fig. 1) in the form

f
L(R)
therm(E(p)) =

∞∫
0
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where E(p) is the quadratic dispersion relation, δΓ (E)
is represented by a Γ -parametrized Lorentzian or Voigt
profile with a width proportional to the phase-breaking
strength Γ = ~/2τΓ , whereby τΓ is the relaxation time
for the scattering processes included in the equilibrium
distribution. The supply function fL(R)(E) is given by
the formula [2]:
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where kB is the Boltzmann constant, T is the temper-
ature, and µ

L(R)
F is the electrochemical potential in the

left (right) contact. The difference between the electro-
chemical potentials of the left and right reservoirs cor-
responds to the applied bias voltage between them, i.e.,
eVB = µL

F − µR
F .

Fig. 1. Lorentz and Voigt profiles compared to the sup-
ply function for different relaxation times τΓ .

We consider a model of electronic device for which
an active region is made of semiconductor compound —
GaAs material. The active region is connected to two
contacts with potential difference VB . Scheme of the
considered system is shown in Fig. 2. Simulations were
performed with the following material and simulation pa-
rameters: device length L = 1 µm, contact temperature

T = 77 K, the Fermi level in right contact µR
F = 0.08 eV,

electron band mass m∗/m0 = 0.067, the relaxation time
inside simulation domain τ = 300 fs, maximum momen-
tum pmax = 0.16 a.u., number of steps Nx = 100 and
Np = 60.

Fig. 2. Scheme of the device which is modeled as an
open system. Effect of the contacts is characterized by
the relaxation time τΓ , and the active region of the de-
vice is characterized by the relaxation time τ .

3. Results and discussion

For a given voltage value VB , we determine the dis-
tribution function f(x, p;VB) by solving Eq. (6) with
boundary conditions (7). Then we calculate the current
as the first moment of the distribution function in the
following way:

I(VB) =
1

2πL

∫
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∫
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m∗
f(x, p;VB). (10)

Owing to that we can determine the current–voltage
characteristics. Results of our calculations based on the
considered theoretical scheme are presented in Fig. 3. We
can see that for the relaxation time τΓ = 10 fs the I–V
characteristics are nearly identical, but for τΓ = 1 fs the
difference between them is visible.

Fig. 3. Current–voltage characteristics for different re-
laxation times in contacts τΓ and a fixed value of relax-
ation time τ in active element of the device, when the
Lorentzian and Voigt profile are used.

These results reflect the fact that the Lorentzian and
Voigt profiles which determine the inflow boundary con-
ditions (cf. Fig. 1) differ slightly from each other. Mini-
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mum of the profiles near p = 0 has little influence on the
current because of its small weight in integral given by
Eq. (10), while the tails of the distribution function at
boundaries give much larger contribution.

Figure 4 displays the relative current change as a func-
tion of relaxation time τΓ , where ∆I(τΓ ) = I0 − I(τΓ ),
and I0 is the current calculated with the supply function
as boundary condition.

Fig. 4. Relative current change due to scattering pro-
cesses in contacts, for voltage VB = 1 V.

For both used profiles, the relative change of current
is similar, i.e., increasing with decreasing τΓ . However,
for the Lorentz profile the change is larger, especially at
smaller relaxation times τΓ . As it should be expected,
the asymptotic behavior when τΓ → 0 leads to rapid
increase in resistance of contacts, while for τΓ → ∞ the
resistance vanishes and the current is equal to I0.

4. Conclusions

Thermalization of electrons in contacts due to scat-
tering processes slightly changes the electronic transport
in the diffusion limit. The difference between relative
change of the current when the Lorentz or Voigt profile
is used for boundary condition is up to several percent
depending on the relaxation time in the contacts.
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