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We briefly review the recent experimental and theoretical research on the modeling of localized deformation
in NiTi shape memory alloys. These alloys exhibit a remarkable response to mechanical loading with a relatively
large reversible strains called superelasticity. We point up factors affecting formation, topology and propagation of
localization patterns. These factors bring considerable difficulties to the development of constitutive models and
superimpose with theoretical and practical issues related to the modeling of material instability. Some of the models
are briefly introduced with a particular attention paid to characteristics of underlying theoretical frameworks.
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1. Introduction

The effect when in spite of monotonic loading deforma-
tion concentrates into a relatively narrow region of the
structure is usually termed localization of deformation
(or strain localization). The deformation response of the
rest of the structure then evolves much less (often remains
rigid or even unloads), hence heterogeneity of mechani-
cal state of the material increases. The effect manifests
itself as shear bands (e.g. metals, concrete, sands), kink
bands (fiber-reinforced ceramics), crack bands, necking,
etc. With increasing loading, localization often leads to
damage and, ultimately, to failure of the structure.

Because of apparent practical importance, first seri-
ous attempts to model localization can be traced back
to the beginning of the twentieth century [1]; however,
significant progress is related to advancement of techni-
cal computing in the last quarter of the century, when
a wide class of so-called nonlocal continuum theories ap-
peared [2-4]. In these theories, mechanical (and thermo-
dynamic) response of a material point is not uniquely de-
termined by values of state and internal variables (fields)
in that point only, but state of material points in a vicin-
ity is also taken into account. The initial aim (common
also to some other generalized continuum theories) was
to enrich the “classical” continuum by some information
below its resolution level. Particular formulations usu-
ally stem from considerations on characteristic material
lengths with respect to “wave-lengths” of expected de-
formation fields and relations between internal scales of
material and computational domain scaling. In the con-
text of the modeling of localization, nonlocal enrichments
regularize strain-softening models and prevent spurious
concentration of strain to infinitely small regions [5,6].

∗corresponding author; e-mail: mfrost@email.cz

Shape memory alloys (SMAs) are intermetallic materi-
als exhibiting a reversible solid-to-solid phase transforma-
tion. The phase change between austenite and martensite
may be induced by temperature changes and/or deforma-
tion. If a piece of the alloy is deformed at a high enough
temperature, it recovers its original shape after unloading
even if deformation reaches several percent; this effect is
called superelasticity (also pseudoelasticity) and the re-
lated (recoverable inelastic) strain linked with the phase
transformation is termed transformation strain. In fact,
martensitic phase features several (non-elastic) structural
mechanisms which allow for recoverable accommodation
of (relatively large) imposed strains; they are collectively
termed reorientation (processes) hereinafter.†

Having found many applications in medicine, civil en-
gineering or aerospace industry [7], NiTi-based alloys
are a prominent class within SMAs usually utilized in
the form of thin structures, e.g. wires, strips or plates.
In such structures, the martensitic transformation of-
ten does not occur in a spatially homogeneous manner;
instead, localized “martensitic bands” form within the
austenitic sample and their fronts propagate leaving a
material with modified dimensions and microstructure
(phase) behind. The macroscopic picture is very simi-
lar to the localization of plastic deformation in certain
steels and alloys well-known as Lüders bands (also slip
bands): the onset is usually accompanied by a stress
overpeak and followed by a stress plateau, material re-
hardens after exhausting the available portion of inelas-
tic strain and the formation of bands depends on mi-
crostructural properties of the material. There are also
some specific features of NiTi alloys: (a) the attain-
able inelastic (transformation) strain is reversible and

†As common in metals, however, if the mechanical loading is
too severe, processes linked with plasticity are initiated and the
original shape is not fully recovered.
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strongly loading mode-dependent [8], (b) physical prop-
erties of the phases differ pronouncedly and transforma-
tion precursor effects are well-documented [9], (c) mi-
crostructural aspects of martensitic transformation in
polycrystalline SMA (e.g. compatibility and interactions
of phases and/or martensitic variants in severely con-
strained polycrystalline environment) are rather complex
and not fully understood yet.

This short contribution aims to summarize recent
progress in both experimental investigation and compu-
tational modeling of such localization in NiTi SMA and
point out some related peculiarities.

2. Experimental observations

Vast majority of experiments were performed with su-
perelastic NiTi alloy at constant ambient temperature
so that mechanical loading induces distinct phase trans-
formation(s) between phases. In their pioneering works,
Shaw and Kyriakides [10, 11] observed localized tensile
deformation on NiTi thin strips covered with a brit-
tle oxide coating. When subjected to straining, coat-
ing shattered allowing observation of localized deforma-
tion by the naked eye. Substantial changes of tempera-
ture documented by complementary thermal camera im-
ages confirmed a tight relation of this localization to
martensitic transformation, which is accompanied by re-
lease/absorption of a latent heat. Because of a strong
coupling between stress and temperature in the ther-
modynamic phase stability criterion (Clausius-Clapeyron
type), the work also showed strong dependence of local-
ization pattern (number of bands) on deformation rate.
The dynamics of formation, propagation and coalescence
of transformation bands and the relation to the strain-
rate was further studied by an in-situ infrared camera
in [12, 13] or by digital image correlation (DIC) method
in [14]. Next, we restrict the review to quasistatic exper-
iments (low loading rates, close to isothermal conditions)
in which the influence of the transformation heat to the
localization process is minimized.

Localization during superelastic loading has also been
extensively documented in thin-walled NiTi tubes. Sun
and Li [15] were first to show that spiral bands may
form in tension of the tubes. Further studies [16, 17]
showed that different topologies of localization patterns
can emerge depending e.g. on the testing temperature.
The development of propagating localized deformation
in tension and homogeneity of deformation in compres-
sion were later documented with DIC in [18–20]. Conse-
quently, bent tubes exhibit wedge-like localization struc-
tures on the outer surface (deformed in tension) whereas
homogenous deformation on the inner one (deformed in
compression) [19, 20]. Interesting findings have been
brought by the very recent experiments of combined load-
ing of tubes: Reedlunn and coworkers [21] performed
a set of axial-torsion experiments following both pro-
portional and non-proportional strain paths. They con-
firmed presence of propagating transformation fronts in

pure tension, their absence in pure torsion, and a pro-
gression of behaviors in between as reported in [15].
Moreover, they first reported vertical columns of shear
strain to gradually appear and disappear during torsion-
induced transformation, suggesting a kind of nonprop-
agating localization develops. Proportional loading of
tubes in combined axial and radial stress (realized by
internal pressure) has been examined by [22] also with
DIC. Localized helical bands with inclinations dependent
on the stress ratio formed except for loading modes close
to equibiaxial tension; in that case the material exhibited
hardening and homogeneous deformation.

Pure tension tests on tubes were repeated by [23] using
a sophisticated experimental design (minimizing bending
and torsion moments that might be induced in the tube
during its tension). They made assertions that can be
generalized as follows (see also [24, 25]): (i) stress peaks
on the stress–strain curves are often not indicating nucle-
ation of phases; they are rather connected with formation
of bands, which, however, separate regions with distinct
dominant phases, (ii) the stress plateau on the stress–
strain curve is only a manifestation of the localization of
deformation; transformation processes can occur before
and after this loading stage as well, (iii) localization can
occur even if the macroscopic tensile stress–strain curve
does not exhibit a clear stress peak and plateau. The
authors also suggested that the “structure–material cou-
pling” can strongly influence evolution of domain mor-
phologies; e.g. compare helical bands in [18, 23] with
branched “finger-structured” bands observed in [16, 19]
or with cylindrical (ring) domains in [16, 17] in case of
NiTi tubes or planar fronts [13, 26] with “criss-cross” pat-
terns [11, 27] in NiTi strips.

In addition to wires, thin strips (ribbons) and thin-
walled tubes (where at least one dimension is substan-
tially lower than the largest one), localization has also
been documented on specimens with all dimensions com-
parable. For instance, Elibol et al. [28] confirmed homo-
geneity of compressive deformation on a cylindrical spec-
imen (with the diameter equal to the height) and local-
ization in a rod-like specimen subjected to tension. Let
us note that some authors [18, 29] suggested determining
influence of (manufacturing) texture (usually present in
wires, rolled sheets, etc.) on this asymmetric behavior
due to the favorable partitioning of strains, stresses and
phases among grains and the cooperative and catalytic
manner of propagation of transformation across neigh-
boring grains.

Localization is very common in superelastic NiTi wires
loaded in tension, see e.g. the investigation of influence
of two-stage transformation via R-phase in [30]. Prop-
agation of deformation bands is optically observable as
a change of the wire diameter behind band fronts. The
front itself has been investigated by Young and cowork-
ers [31] with in-situ synchrotron X-ray diffraction meth-
ods during loading of an ultrafine-grained NiTi (about
50 nm grain size). It was found that within the trans-
formation zone of finite depth, both phases are highly
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strained and only a small amount of residual austenite
remains within the “martensitic” band. This contrasts
with works [32, 33] which reported significant remnants of
austenite within the band in coarse-grained (50–200 µm)
strip specimens. The different grain size suggests a strong
influence of this parameter to localization characteris-
tics; indeed, determining influence of grain size to the
superelastic response was shown in [34, 35]. Even more
detailed picture of the band front was brought by 3D
X-ray synchrotron diffraction measurements by Sedmák
et al. [36]. Advanced tomographic techniques allowed
to resolve elastic strains and stresses in approx. 15,000
austenitic grains (6 µm) at and close to localized trans-
formation front in a superelastic NiTi wire under ten-
sion. They were able to partially reconstruct its topology
(“a nose-cone shape”) and found that the internal stress
states in grains massively change and redistribute within
the propagating front so that, at the onset of transfor-
mation, austenitic grains were (in average) exposed to
equivalent stresses more than 200 MPa higher then ex-
ternally measured plateau stress. The results suggest
that the severe changes of stress states ahead the (lo-
calized) phase interface due to the macroscopic internal
stress prevail over the local effects of grain orientation,
size and neighborhood during formation and propagation
of the transformation front in this case.

In spite of substantial progress brought by the
above-mentioned and other microstructural observa-
tions (e.g. [18] using electron backscatter diffraction
(EBSD) technique, [37] employing combination of DIC
and scanning electron microscopy), the particular phase
transformation-based microstructural phenomenon lead-
ing to Lüders-like behavior in polycrystalline NiTi (i.e.
the counterpart to dynamic strain aging mechanism stim-
ulating conventional Lüders bands in mild steels) has
not been fully established yet. It is expected that the
key is the understanding of interactions at the meso-
scopic level, i.e. the level of transforming grains and
their aggregates. Fortunately, the subduing influence of
the macroscopic internal stress reported by Sedmák [36]
favors macroscopic perception of Lüders-like behavior
in NiTi as a mechanical phenomenon (see also reason-
ing by Liu [24]) tractable (for a “fixed material”) by
means of modern tools of structural mechanics as out-
lined in the next section.

3. Modeling

Despite abundance of constitutive models of SMAs in
the literature — originating at different scales of descrip-
tion and simplification, see recent reviews [38, 39] —
macroscopic (continuum) models covering localization in
polycrystalline SMA have been attempted rarely.

Significant effort has been devoted to transferring the
extensive knowledge gained from experimental and theo-
retical studies on single-crystals to the modeling of poly-
crystalline SMA. However, the academic search for an
effective, plausible and physically realistic micro scale–

macro scale transition model continues. A somehow sim-
plistic combination of phase field approach with a strain-
softening response regularized by a rate-dependent trans-
formation kinetics in [40] is one of few models of this kind
incorporating also the localization phenomenon.

Macroscopic models stemming from continuum me-
chanics and thermodynamics are slightly more numer-
ous, likely since complex interactions leading to local-
ization can be merged and distilled to averaged contribu-
tions to the constitutive laws in a more phenomenological
way.‡ In the pioneering works [11, 41], Shaw et al. used
a simple isotropic plasticity model with strain-softening
to study localization in NiTi strips deformed in pure ten-
sion. They were able to capture some basic features of
forming localization bands and to study influence of la-
tent heat via incorporation of the thermal coupling. The
concept was extended for unloading in [42]. These sim-
ple models adopted isotropic plasticity-based constitu-
tive laws disregarding specifics of SMA material. A cer-
tain remedy came with one-dimensional phenomenolog-
ical models for SMA wires [43, 44] with incorporated
specific chemical free energy of transformation, refined
transformation kinetics, and strain softening. Although
internal variables related to the phase fraction of marten-
site are introduced, regularization of material instability
is incorporated via adaptation of strain-gradient elastic-
ity approach; consequently, the displacement field is in-
terpolated with (cubic) Hermite polynomials in the finite
element implementation of the models.

However, the motivation for including higher gradients
of (total) strain can be questioned and this approach re-
quires modification of global balance laws and utilization
of interpolants with higher continuity, which is computa-
tionally more demanding, especially if the formulation of
the model would expand to three-dimensional setting. A
useful alternative may be to link localization to some in-
ternal variable(s) related to phase transformation.§ Reg-
ularization of the model is achieved via incorporating in-
formation on values of a chosen internal variable in its
close neighborhood. This may be performed in three
steps: (i) introducing a “nonlocal counterpart” to some
(physically motivated) internal variable, which encom-
pass the information, (ii) relating these “twin” variables
(nonlocal variable is computed from the local one), and
(iii) modifying the constitutive laws. The first and the
last steps provide enough space for development of new
constitutive laws for a particular material. In the sec-
ond step, two well-established approaches can be bor-
rowed from structural mechanics: the implicit nonlocal
gradient approach (iNGA) and the nonlocal integral ap-

‡Let us remind that this class of models does not aim to recon-
struct particular martensitic microstructures.

§Internal variables are a powerful tool for capturing inelastic
deformation in constitutive laws. They represent the microstruc-
tural state of the material and enter the formulae for stored and
dissipated energy.



850 M. Frost, P. Sedlák, T. Ben Zineb

proach (NIA). In the former case, the local and corre-
sponding nonlocal variables are linked via an additional
(elliptic) partial differential equation (PDE), in the lat-
ter case, these variables are linked via an integral relation
– the nonlocal variable in a material point is defined as
a weighted integral average of the local one (usually, the
weight function is concentrated in a close neighborhood of
the point). Corresponding general mathematical formu-
lations are closely related; specifically, iNGA can be de-
rived from NIA using particular weighting functions [45].
Moreover, an internal parameter related to some char-
acteristic length scale is present in both approaches and
determines the extent of the affecting neighborhood.

The model of Armattoe et al. [46] implemented in the
two-dimensional setting is an example of the iNGA. It
refines and extends the superelastic localization model
of Duval et al. [47] for any (quasistatic) thermomechan-
ical loading. Two local internal variables — a scalar
representing volume fraction of martensite and a ten-
sor of transformation strain of martensite — are intro-
duced and the scalar one also has its nonlocal counter-
part. The non-local variable modifies the critical driving
force for transformation, i.e. the “shape of (transforma-
tion) yield surface”, and allows for strain-softening mate-
rial response. The nonlocal variable does not appear in
the free energy, which is adopted from the (strictly local)
SMA model [48]. The PDE relating local and nonlocal
variables is accompanied by the homogeneous Neumann-
type of boundary condition; it also assures that the total
amount of the nonlocal volume fraction of martensite in
the domain is at any time equal to the local one. Neces-
sity of solving an additional PDE on the computational
domain leads to an additional degree of freedom in the
finite element implementation of the model.

A nonlocal modification of the local three-dimensional
model by Sedlák et al. [49, 50] presented in [51] and uti-
lized for the computational reconstruction of the marten-
site band front in [36] is an example of the NIA. The same
two local and one (scalar) nonlocal internal variables as
in [46] are introduced. However, the nonlocal variable
appears only in the free energy (in the phase-interaction
term) and not in the dissipation function, which directly
determines the yield criteria in the model.¶ The normal-
ized Gauss distribution function is employed as the kernel
of the integral operator; its standard deviation serves as
the internal length parameter. The retarded step tech-
nique (staggered computation of nonlocal variable) with
restricted time stepping is used in the finite element im-
plementation to reduce computational costs.

Two other conventional local constitutive SMA mod-
els have been also modified for localization via strain-
softening recently; both of them utilize nonlocal variable

¶Let us note that a special, asymmetric coupled form of the
dissipation function forms the core of the NiTi-tailored constitutive
model of Sedlák et al.

derived from volume fraction of martensite. Ahmadian et
al. [52] modified the free energy of the model [53] and NIA
is suggested for regularization, although the final form of
constitutive equations is not explicitly stated in the pa-
per. The original model of Brinson [54] was modified
in [55] in the expression of the critical driving force and
resulting strain-softening is regularized by iNGA. How-
ever, because of a simplistic formulation of the original
models (surpassed by later works of the same and other
authors), the ability of their nonlocal derivatives to plau-
sibly predict SMA behaviors is rather limited.

4. Discussion and concluding remarks

As apparent from the previous subsection, the combi-
nation of dependency on geometry of the specimen, its
microstructure, applied loading mode and boundary con-
ditions hinders sound understanding of the physical roots
of the phenomenon and makes any attempt for a (reason-
ably) general modeling description a real challenge.

Many rather fundamental questions have not been an-
swered yet, e.g.: Which microstructural level and what
type of mismatch is key for the material instability? Does
localization occur during reorientation of martensite as
indicated by experiments of Liu et al. [56, 57] or this is
not the case as observed in [17]. Could some character-
istics of the morphology of the localization band front
revealed by Sedmák et al. [36] in wires subjected to ten-
sion be somehow generalized also for other geometries
and loading modes? Is the strain-softening rooted in the
stored or dissipated energy of the material?

From the modeling point of view, resolving the first
two problems will help to set up effective internal vari-
ables; all reviewed models link the softening simply to the
scalar variable representing volume fraction of marten-
site, which may be insufficient for capturing loading-
mode dependent localization patterns observed in exper-
iments (cf. bending of a SMA tube simulated in [55]). It
can also hint at physical-based determination of the inter-
nal length parameter (which is a problem for some other
nonlocal continuum models, too); this is also related to
the third question. The last question is strongly related
to the modeling of dynamics of the material in which
thermal coupling plays an important role (e.g. strain de-
pendence of localization).

Other difficulties are related to fitting of the strain-
softening response. Since softening is “invisible” in
macroscopic stress-strain curves with a plateau, the
phase transformation starts before onset of the stress
overpeak and it is often incomplete at the end of the
plateau [23], dedicated experiments revealing the course
of the strain-softening are needed.‖ Quantitative results

‖Let us note that careful determination of elastic properties
of martensite in [58] can help to clarify the further increase of re-
coverable strain during loading beyond macroscopic transformation
plateau [25].
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have been reached recently in [59] via a sophisticated
measurement of a NiTi-stainless steel composite and by
Alarcon et al. [60] via a special geometry of NiTi bulk
specimen.

Finally, a weak point of most of the nonlocal contin-
uum models is the justification of the treatment of the
domain boundary. Neither modification of the weight
function close to it in NIA, neither the requirements lead-
ing to Neumann boundary condition in iNGA are clearly
motivated in most of them. This remains valid also for
the above-mentioned SMA models.
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