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Design of materials for severe high temperature mechanical exposures can be assisted by a newly developed
3D discrete dislocation dynamics model which can be tailored for a numerical simulation of hot tensile tests. The
3D discrete dislocation dynamics model is based upon the linear theory of elasticity. The dislocation structure is
represented by short straight segments. This allows a straightforward calculation of the stress fields and, subse-
quently, the driving forces at any point in the simulation cell as a linear sum of stress contributions of individual
dislocation segments, osmotic forces, externally applied stress, misfit stresses, the Peierls stress etc. Furthermore,
the model addresses interaction between dislocation segments and rigid incoherent spherical precipitates. The dis-
location displacement is calculated from the equations of motion, which address both dislocation glide and climb.
The external loadings enter the model as an applied strain during a tensile test, from which the resolved shear
stress is calculated. The resolved shear stress is calculated from the Hooke law and it is constant throughout the
simulated volume during one integration step. Furthermore, a benchmark study is performed in which the 3D
discrete dislocation dynamics model of the tensile test focuses on a migration of a low angle dislocation boundary
in a field of rigid spherical precipitates. Obtained results are compared to former calculations during which the
applied stress was kept constant.
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1. Introduction

Material plasticity due to applied loadings is of a key
importance for the material design and applications. The
material response is mainly controlled by dislocation dis-
placements, mostly through dislocation glide in low-index
(compact) crystallographic planes. However, for high
temperatures, non-compact glide (high-index planes) and
dislocation climb due to thermally activated vacancy dif-
fusion also has to be considered [1–3].

The material investigation covers a wide range of me-
chanical tests, among which we focus particularly on high
temperature creep, which addresses a long-term material
response to constant applied stress (or loading), and hot
tensile tests performed at a constant strain rate. In the
present contribution we apply a newly developed 3D dis-
crete dislocation dynamics (DDD) model to precipitation
hardened material, e.g. an oxide dispersion strengthened
(ODS) alloy, subjected to the hot tensile test.

We investigate how a low-angle dislocation boundary
passes an array of rigid incoherent spherical precipitates.

2. 3D DDD model

The presented model is based on the linear theory of
elasticity [4]. The stress field due to the dislocation struc-
ture is evaluated in the approximation of short straight
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segments of a general mixed character [3]. The total
stress driving the dislocation system is then obtained as
a linear combination of fields due the individual disloca-
tion segments and the contribution from the externally
applied stress [4]. The velocity of a dislocation segment,
which, by integration, yields the segment displacement, is
a linear function of the segment mobility and the Peach–
Koehler force (PKF). The PKF is determined by the local
stress field σ̂ and the line Burgers vector b and the line
direction ξ [2, 4]:
f = (b · σ̂)× ξ, (1)

The linearity of the PKF (Eq. (1)) allows a decomposi-
tion of f into the edge and screw components
f = [(be + bs) · σ̂]× ξ = (be · σ̂)× ξ + (bs · σ̂)× ξ

= fe + fs. (2)
Furthermore, the edge component can be projected to
the glide plane and to the glide plane normal ng:
fe = fg + fc, fg = [fe · (ng × ξ)] (ng × ξ),

fc = (fe · ng)ng, ng = (ξ × b)/|ξ × b|. (3)
The velocity components are associated with the PKF
components by the following relations:

vg =
Agfg
sinβ

(
edge
glide

)
, vc =

Acfc
sinβ

(
edge
climb

)
,

vs =
Asfs
cosβ

(screw) , cosβ =
b

|b|
· ξ. (4)
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The velocity factors Ag, Ac and As depend on the crys-
tallographic orientation of the dislocation segments. For
example, for the low-index glide, we put Ag = As =
10Ac, whereas for the non-compact glide, we put Ag =
As = 2Ac. The climb factor is related to the thermally-
activated vacancy diffusion

Ac =
D0Ω

b2kT
exp

(
− Q

RT

)
, (5)

where Ω is an atomic volume, b is the length of Burgers
vector, k is Boltzmann constant, R is gas constant, T is
temperature, Ds = D0 exp(−Q/RT ) is the factor of self-
diffusion and Q is the activation energy of self-diffusion.

Let us introduce local coordinate system with xz
plane coincident with the glide plane of the segment,
the z axis oriented along the dislocation segment and
the y axis represents the glide plane normal. Then the
relations for the velocities of the edge and screw parts of
the dislocation segments in local coordinates are
ve = (ve,x, ve,y, 0) = (vg, vc, 0), vs = (vs,x, vs,y, 0). (6)
The dynamics of the general mixed dislocation segments
further obeys a thermodynamic extremal principle
(TEP) [5], which yields [3]:

vx =
AgAs

Ag cosβ +As sinβ
fx, vy =

AcAs

Ac cosβ +As sinβ
fy,

f = (fx, fy, 0) (local coordinates). (7)

The 3D DDD model incorporates also rigid incoherent
spherical precipitates. This means that the dislocations
may not pass through the interface between the matrix
and the precipitate. In the model, this is expressed by a
reaction force, which is exerted by the precipitate on the
dislocation in contact with the matrix–precipitate inter-
face. The reaction force exactly compensates the driving
force component normal to the interface. Applying the
TEP, we obtain

fp = −Cxfx cosα+ Cyfy sinα

Cx cos2 α+ Cy sin2 α
, fp = fp(cosα, sinα, 0),

v = Cy(fy + fp sinα)/ cosα, v = v(− sinα, cosα, 0).(8)
The angle α is delimited by the particle interface normal
and the x axis of the local coordinate system associated
with the segment. For further details on the 3D DDD
model see [3, 6].

3. The numerical model of the tensile test

The total strain due to external loading can be decom-
posed into the elastic part and the plastic part. Here
we first calculate a permanent strain due to a dislocation
displacement in one particular glide plane.

We focus on a part of a crystal with dimensions
lx, ly, lz with a dislocation having a Burgers vector b =
1
2 (bx, 0, bz) and line direction ξ = (0, 1, 0). When a dislo-
cation moves in the positive x direction, then a rectangle
(solid line) depicted in Fig. 1, is deformed into a paral-
lelepiped (dashed line). We have

εpxz =
1

2

(
bx
lz

+
bz
lx

)
=

1

2

bxlxly + bzlylz
lxlylz

=

1

2

bx∆Sz + bz∆Sx

V
, (9)

where ∆Sz = lxly, ∆Sx = lylz and V = lxlylz. The ε̂p
tensor represents a plastic contribution to the strain. For
an arbitrary dislocation, this may be generalized as [7]:

εpij =
(bin

∆S
j + bjn

∆S
i )∆S

2V
, (10)

where n∆S is a unit normal vector to the plane
element ∆S.

Fig. 1. Meaning of the shear components of the strain
tensor; u denotes the displacement.

The numerical tensile test uses the 3D DDD method
to obtain plastic strain due to dislocation displacements.
The total strain ε̂ is thus a superposition of the plastic
strain ε̂p and the elastic strain ε̂e. To simulate a tensile
test with a constant strain rate ˙̂ε, we calculate these con-
tributions in every iteration I:

∆ε̂(I) = ˙̂ε∆t,

∆ε
p,(I)
ij =

N∑
s=1

(bs,in
(I)
s,j + bs,jn

(I)
s,i )∆S

(I)
s

2V
. (11)

Here ∆t is the time integration step, N is the number of
dislocation segments, bs their Burgers vectors and ∆S

(I)
s

areas swept by these segments during the iteration I.
The total strain ε̂ and total plastic strain accumulated
up to the integration I are

ε̂(I) =
∑
J≤I

∆ε̂(J), ε̂p,(I) =
∑
J≤I

∆ε̂p,(J). (12)

The stress applied on the dislocation structure in the iter-
ation I is obtained from the elastic strain in the iteration
I using the Hooke law. Finally, the elastic strain and the
associated stress in the iteration I is given by

ε̂e,(I) = ε̂(I) − ε̂p,(I),

σ
(I)
ij = 2µε

e,(I)
ij +

2νµ

1− 2ν
δijε

e,(I)
kk . (13)
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4. A migration of a low-angle tilt boundary
during constant strain rate test

Following the earlier calculations [3, 6, 8, 9] where a low
angle tilt boundary (LATB) was subjected to a constant
shear loading, we have started with the same dislocation
structure consisting of n initially parallel and equidis-
tant edge dislocation lines in a basic simulation cell. The
basic simulation cell contains a spherical particle and
has two planes of symmetry y = 0 and z = 0. Quasi-
periodic boundary conditions involve a pattern composed
of 3× 3 simulation cells (replicas of the basic simulation
cell) along the y and z axes. The input parameters are
summarized in Table I.

TABLE IInput parameters of the model.

µ 80 GPa shear modulus
ν 0.3 Poisson ratio
D0 2 cm2 s−1 diffusion factor
Q4 240 kJ mol−1 activation energy
T 873 K temperature
Ω (0.35 nm)3 atomic volume
b (0.2,0,0) nm Burgers vector

∆t 3 ms time step
ε̇xz 1.25× 10−4 s−1 constant strain rate
N 32 # of segments
n { 7,. . . ,17 } # of lines in a cell

ay; az 200 nm cell dimensions
h az/(n− 1) initial line spacing
c [-50,0,0] nm particle center
d 100 nm particle diameter
λ 200 nm particle distance
l 〈3, 8〉 nm segment length

In the presented calculations, a constant strain rate
ε̇XZ is applied without any initially applied stress, i.e.
σ̂(0) = 0 MPa. Thus in the very first integration step, the
LATB does not move. As a result, after the first integra-
tion step, there is no plastic strain and the total strain
ε̂(1) = ˙̂ε∆t is purely elastic. At the beginning of the sec-
ond step, σ̂(1) is calculated from the Hooke law (Eq. (13)).
The dislocations set in motion due to the nonzero applied
stress and plastic deformation commences. With increas-
ing time (increasing number of integration steps), the ap-
plied stress gradually increases up to the point when the
LATB passes by the precipitate array.

The results obtained for different initial line spacings
h are summarized in Fig. 2. The calculated stress-strain
curve is shown in Fig. 2a, whereas the evolution of plastic
strain with time is presented in Fig. 2b.

5. Discussion

Our numerical results clearly show that the recent 3D
DDD model [3] can be successfully extended to situations
in which stresses due to the constant strain rate load-
ing contribute to the driving forces which set dislocation

Fig. 2. (a) The stress–strain plot for the numerical
constant strain test and (b) the plot of plastic strain
contribution vs. time for ε̇xz = 1.25 × 10−4 s−1 and 6
different initial line spacings h.

segments in motion. These simulations yield deformation
curves similarly to stress–strain curves recorded in exper-
iments. The numerical deformation curves (see Fig. 2a)
start with a nearly linear part, where the plastic defor-
mation is negligible. As the dislocation lines bow round
the precipitates, the numerical curve deviates from the
initial linear part. The imposed constant strain rate re-
sults in the increase of stress up to the point when the
combined glide and climb motion of the dislocation seg-
ments in contact with precipitates makes the dislocation
lines to pass by the precipitate array. From this moment
on the plastic contribution to the overall strain outbal-
ances the elastic strain and the stress decreases down to
the level characteristic for the steady free motion of the
LATBs (Fig. 2b).
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Interestingly, our model shows that the values of the
peak stress systematically decrease for denser LATBs
(lower initial line spacings h). This result reflects the fact
that the total area swept by the dislocations for lower
h (higher density of dislocations forming the LATB) is
higher and thus also provides more plastic strain ε̂p.
While the total strain ε̂ is imposed by the external load-
ing condition and does not depend on the dislocation
density, the elastic strain, which is a difference between
the imposed total strain and the plastic strain, drops and
yields correspondingly lower flow stress, see Eq. (13).

6. Summary and conclusion

We have extended our 3D discrete dynamics model [3]
to situations where the total strain of the simulated sys-
tem is externally imposed by the constant strain rate de-
formation. Under these conditions the calculations mimic
a classical tensile test. The results suggest that denser
dislocation boundaries can overcome particle arrays at
lower flow stresses. The future development of the model
will focus on a better representation of the stress–strain
relation using finite element method (FEM). FEM-based
calculations will allow better spatial resolution as far as
the stress distribution in the calculation cell is concerned.
However, even the preliminary results presented in this
contribution provided an interesting and inspiring insight
into the dislocation process governing the high tempera-
ture plasticity during hot tensile tests.
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