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Crystalline materials at yield behave as anisotropic, highly viscous fluids. A microscopic inspection reveals a
structural adjustment of the crystal lattice to the material flow carried by dislocations. The resistance to this flow
determines the strength of ductile materials. The deformation microstructure evolves within a common framework
up to very high strains > 100. To avoid energetically costly multislip, materials are subdivided into regions which
deform by fewer slip systems. To maintain compatibility, the regions defined as deformation bands occur in a
form of elongated alternately misoriented domains filled with fairly equiaxed dislocation cells. In the proposed
continuum mechanics model, the formation of deformation bands of a lamellae type is interpreted as a spontaneous
deformation instability caused by an anisotropy of hardening. However, such a model of the bands predicts their
extreme orientation and their width tends to zero. This trend is opposed by hardening caused by a bowing stress
of dislocations within the cells.
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1. Introduction

The process of the deformation microstructure evolu-
tion may be understood as an energetically optimal ad-
justment of the crystal lattice to the material flow. The
evolution is a result of a complex and well documented
process reviewed e.g. in [1–4]. It follows a common
scenario represented by a succession of the deformation
bands in the form of cell blocks, microbands, and finally a
laminar structure which dominates the high strain range.
In each evolution stage, a new cell wall system† is built
up to facilitate the flow by the storage and the annihi-
lation of the excess dislocations and their debris. The
maximum achievable deformation strengthening is deter-
mined by the resistance to a dislocation flow through the
laminar structure.

The laminar structure occurs in materials exposed to
e.g. severe rolling, high pressure torsion, accumulative
roll bonding or sliding in a wide range of strain levels of
order 1 up to over 100 [6, 7]; the proposed model simu-
lates rolling. The formed lamellae are oriented close to
the rolling direction, with a large misorientation across
their boundaries, > 15◦. The lamellae most often con-
tain one cell in the width and several to a few along
their length. The lamellae boundaries are frequently lay-
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†In non-cell forming materials the inner structure of the defor-
mation bands consists of dislocations organized into a Taylor-type
lattice [5].

ered closely to each other with narrow cells between them
forming very thin cell blocks. The narrow channels be-
tween the lamellae boundaries are bridged by intercon-
nected cell boundaries which are approximately perpen-
dicular to the rolling direction and thus form a bamboo
structure.

The model proposed in the following section points to
two main mechanisms inducing the existence and evo-
lution of the laminar structure: (a) material anisotropy
caused by crystalline nature of plasticity, and (b) dislo-
cation cells.

2. A model of laminar structure

Models of the deformation bands have been proposed
by a number of authors, e.g. [8–13], as commented in our
previous papers [14, 15]. The present paper focuses on
the deformation bands in the form of a laminar structure
filled with cells. As a base, we employ Biot’s model of
orthotropic materials [16] where the orthotropy is carried
by plane strain symmetric double slip. The model has
been analyzed by Harren’s et al. [17] and employed in
our recent publications on deformation bands [14, 15].
The considered symmetric double-slip compression is a
convenient two-dimensional idealization of a cold-rolled
polycrystalline grain oriented symmetrically with respect
to the normal to the rolling plane (so-called rotated cubic
orientation) [18].

We consider an infinitely extended rigid-plastic
crystal domain in the coordinate system (x, y) with
the symmetry axis placed along the y coordinate axis.
The rolling direction is parallel to x axis, the direction
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of compression is parallel to y axis. The angle of the
slip planes with respect to the y axis is φ = ±35◦.
The incremental deformation representing a deviation
from the original symmetric double slip is expressed
through an incremental displacement vector u(x, y).
The incremental strain ε(x, y) added to the current
homogeneous or homogenized strain ε̄ is defined as
ε = (∇u + (∇u)T )/2. In the rigid-plastic approxima-
tion, the incremental strain ε is caused by increments of
slips γ(1)(x, y) and γ(2)(x, y) on the two considered slip
systems ε =

∑2
i=1 γ

(i)(s(i) ⊗m(i) +m(i) ⊗ s(i))/2; here
s(1) = (sinφ, cosφ) and s(2) = (− sinφ, cosφ) represent
the slip directions, and m(1) = (− cosφ, sinφ) and
m(2) = (cosφ, sinφ) are the unit slip plane normals, we
obtain

εxx = − sin 2φ(γ(1) + γ(2))/2,

εxy = − cos 2φ(γ(1) − γ(2))/2. (2.1)

To satisfy the incompressibility of the deformation
εxx + εyy = ∂xux + ∂yuy = 0, we use the stream function
ψ so that ux = ∂yψ, uy = −∂xψ. We look for an
inhomogeneous, kinematically admissible deformation
constructed from the stream function ψ = F (x + ξy)
which represents an inhomogeneous simple shear parallel
to the planes x + ξy = constant. The shear inhomo-
geneity can be interpreted as a deformation band-like
pattern perpendicular to the direction ξ = tan θ, where
θ is the angle between the x axis and the normal to
the bands. In view of the linearity of the problem at
hand, any linear combination of the stream functions
with different profiles F and directions ξ is admissible.
In terms of the stream function, the admissible strains
read

εxx = ξF
′′
, εxy =

1

2
(ξ2 − 1)F

′′
, (2.2)

where F
′′
represents the second derivative with respect

to the argument x + ξy. Kinematically admissible
crystallographic slip increments then follow from (2.1),

γ(1) =

(
1− ξ2

2 cos 2φ
− ξ

sin 2φ

)
F

′′
,

γ(2) =

(
ξ2 − 1

2 cos 2φ
− ξ

sin 2φ

)
F

′′
. (2.3)

The stress in the deforming crystal domain is assumed
in the form σ̄ + σ where σ̄ is the applied homogeneous
compression in the y direction and σ(x, y) is an (in
general) inhomogeneous stress increment. The stress
equilibrium, divσ = 0, leads to‡

∂xσxx + ∂yσxy = 0, ∂xσxy + ∂yσyy = 0. (2.4)

‡We leave out the destabilizing effect of geometrical softening
caused by pre-stress σ̄, since in the deformation banding, the pre-
stress causes a subsidiary effect only [14, 15].

The slip increments are induced by the increments in the
resolved shear stresses τ (i) = s(i) · σm(i), i = 1, 2,

τ (1) = − sin 2φ(σxx − σyy)/2− cos 2φσxy,

τ (2) = − sin 2φ(σxx − σyy)/2 + cos 2φσxy. (2.5)
In the rate-independent approximation the resolved shear
stress equals the flow stress in the plastic regime. This is
accounted for by the hardening rule which plays a central
role in the model.

The proposed rule is assumed to be formed by bulk
and boundary parts. For the bulk part

τ
(1)
V = (h+ hbow)γ(1) + qhγ(2),

τ
(2)
V = qhγ(1) + (h+ hbow)γ(2). (2.6)

The entries are the self-hardening coefficient h and the
latent (cross) hardening coefficient qh. The latent-to-
active hardening ration q is a measure of the hardening
anisotropy and is one of the key parameters of the model.
The reason for adding a hardening term hbow to the self
hardening h is that the dislocation bowing within the
cells hinders the active slip. We employ a line tension
strengthening in the form hbow = Gb/L, where G is the
shear modulus and b is the magnitude of the Burgers
vector. As the lamellae most often contain one cell in the
width, the cell size is identified with the lamella width L.

The lamella boundary part of the hardening rule repre-
sents a complex problem: at boundaries dislocations can
be reflected, absorbed or desorbed and/or transmitted
directly. The lamella boundaries are treated in a highly
simplified way as interface objects characterized by an
isotropic hardening rule

τ
(1)
B = τ

(2)
B = h̃(∆γ̂(1) + ∆γ̂(2)). (2.7)

Equation (2.7) can be interpreted as a part of the flow
stress increments needed to penetrate a cluster of the
lamella boundaries. The jumps ∆γ̂(i), i = 1, 2, represent
the difference in the slip increments across the bound-
aries between the neighboring lamellae. The coefficient h̃
is very difficult to specify; it enters the model as a fitting
parameter.

3. Variational approach
to laminar structure formation

The variational formulation shows clearly that, for
anisotropic hardening, an inhomogeneous deformation
leading to the lamellae formation is energetically more
favorable than the homogeneous one.

In the variational formulation, we utilize the principle
of virtual displacements,

∫
divσ · δu = 0, where δu(x, y)

is an arbitrary virtual displacement field. The principle
leads to a weak form of the equilibrium Eq. (2.4):∫

Ω

(σxxδεxx + 2σxyδεxy + σyyδεyy)dV = 0, (3.1)

where Ω is the crystal domain in the xy plane.
Introducing the constitutive relations (2.6) and (2.7)

into (3.1), expressing εxx, εyy, εxy, γ(1) and γ(2) through
the stream function F (x + ξy) using (2.2), (2.3), and in
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view of the symmetry of the hardening (2.6) and (2.7),
the equilibrium (3.1) can be expressed as an extreme of
the functional J requiring its first variation to be zero,
δJ = 0,

J =
1

2

{
4[Hxx +Bxx]ξ2 (3.2)

+[Hxy+Bxy](ξ2−1)2
}∫

Ω

(F
′′
)2 dV+4H̃ξ2

∫
A

(F
′′
)2 dA,

where A is the area of the lamella boundaries contained
in the domain Ω , and

Hxx =
h(1 + q)

2 sin2 2φ
, Hxy =

h(1− q)
2 cos2 2φ

, (3.3)

Bxx =
hbow

2 sin2 2φ
, Bxy =

2hbow
2 cos2 2φ

, H̃ =
h̃

2 sin2 2φ
.

In Eq. (3.2), we supposed that the increments γ(1) and
γ(2) are uniform in each lamella. The slip is adjusted
such that the incremental slips alternate in the direction
perpendicular to the lamellae and is averaged to zero, i.e.
∆γ(i) = 2γ(i). The width L > 0 of the bands is taken to
be the same for all the lamellae.

The inhomogeneous incremental deformation defined
by F (x+ ξy) 6= 0 is now assumed to be such a deviation
from the homogeneous increment that the corresponding
strains vanish on average. A homogeneous increment can
be formally represented by F (x+ξy) = 0. The functional
(3.2) thus now represents an energy difference between
the homogeneous and inhomogeneous deformation incre-
ments. The inhomogeneous deformation increment is en-
ergetically favorable if the functional becomes negative,
J < 0. If a kinematically possible deformation fulfill-
ing this condition exists, the homogeneous deformation
is unstable and a pattern is formed. There are two main
mechanisms of the laminar structure evolution: (a) mate-
rial anisotropy represented by Hxx and Hxy, and (b) cells
and lamella boundaries represented by Bxx, Bxy and H̃.

3.1. Anisotropy

To exclude the cells and lamella boundaries, we take
Bxx = 0, Bxy = 0, H̃ = 0 in (3.2); the energetic function
in (3.2) is consequently reduced to 4Hxxξ

2+Hxy(ξ2−1)2.
In view of (3.3)1 this function may become negative for
h > 0 and q > 1, i.e. for a dominant latent hardening.
This is demonstrated by the graph of the reduced energy
function J̄A(ξ) = J(ξ)/Hxx

∫
(F

′′
)2 shown in Fig. 1a,

J̄A(ξ) = 2ξ2 +K(1− ξ2)2, (3.4)
where

K =
Hxy

Hxx
=

(1− q)
2(1 + q)

tan2 2φ. (3.5)

The graph of J̄A(ξ) was evaluated for φ = 35◦ and
q = 1.5. The negative J̄A < 0 indicates an energy gain
in forming the pattern. The inhomogeneous incremental
deformation with ξ →∞ is the most energetically favor-
able. It corresponds to the lamella-like pattern perpen-
dicular to the direction of the compression, i.e. θ → π/2
(parallel to the rolling direction).

Fig. 1. Graphs of the reduced energetic functions; ξ
characterizes the lamellae orientation. (a) J̄A(ξ) indi-
cates a trend to form the lamellae parallel to the rolling
direction, ξ → ∞ (θ → π/2); (b) J̄C(ξ, Lmin) shows a
modifying effect of the cells and the lamella boundaries.

To estimate a length scale of the pattern we consider
the deformation banding inspired by a band microstruc-
ture observed in cell forming metals represented by peri-
odically arranged lamellae perpendicular to the direction
ξ. The lamellae of the width L are assumed to be ho-
mogeneously sheared, i.e. F

′′
= ±(a/L), where a is an

amplitude of the incremental displacement. Under these
assumptions and Bxx = 0, Bxy = 0 and H̃ = 0, the
functional (3.2) integrated over the crystal domain Ω be-
comes a function

JA(ξ, L) = 1
2
(4Hxxξ

2 +Hxy(ξ2 − 1)2)
a2

L2
V, (3.6)

where V is the volume of the crystal domain Ω . The
function (3.6) indicates that for a given amplitude a the
fastest growth of the pattern is reached for L→ 0.

That the deformation bands tend to be oriented per-
pendicularly to the direction of compression and tend to
have a zero width was discovered by Biot [16]. He noted
([16] p. 199): “This conclusion may seem paradoxical,
but there are inherent limitations in the validity of the
theory for very small wavelengths. It is, of course, not
valid in the atomic scale. Then non-linearity also enters
into play. The result therefore indicates that the buckling
wavelength will tend to be the smallest compatible with
the small-scale physics of the medium.” In the herein
proposed model, the small-scale physics is represented
by the cells and lamella boundaries.

3.2. Cells and lamella boundaries
The functional J (3.2) incorporates the cells and

the lamella boundaries through Bxx, Bxy and H̃. We
accept, similarly as in (3.6), the periodically arranged
lamellae of the width L. In view of that, the area of the
lamella boundaries A in the volume V of Ω is V/L. We
further assume that the shear strain in the lamellae is
F

′′
= ±(a/L); the functional (3.2) integrated over the

crystal domain Ω thus becomes a function

JC =
1

2

{
4[Hxx +Bxx]ξ2 + [Hxy +Bxy](ξ2 − 1)2

} a2

L2
V

+
1

2
4H̃ξ2 a

2

L3
V. (3.7)
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Introducing the line tension assumption hbow = Gb/L
into (3.7), we obtain for the reduced energetic function

J̄C(ξ, L) = JC(ξ, L)/Hxx

∫
(F

′′
)2,

J̄C(ξ, L) =

[
2ξ2 +

(1− q)
2(1 + q)

(1− ξ2)2 tan2 2φ

]
1

L2

+
1

2h(1 + q)
[4h̃ξ2 +Gb(1− ξ2)2 tan2 2φ]

1

L3
. (3.8)

The minimum of J̄C(L, ξ) with respect to the width
L and the orientation ξ indicates the most favorable
structure formed. The conditions of the minimum are:
∂J̄C/∂L = 0 and ∂J̄C/∂(ξ2) = 0. The graph of
J̄C(ξ, Lmin) shown in Fig. 1b demonstrates, in compari-
son with Fig. 1a, the influence of the inner lamellae struc-
ture of the cells and the lamella boundaries.

To demonstrate the predictive ability of the model, an
illustrative example of a laminar structure is presented.
Due to the drastic simplifying assumptions, the lamella
width L and the angle of inclination to the rolling di-
rection θroll predicted by the model are merely indica-
tive. We use entrance data for nickel: G ≈ 70 GPa,
b = 0.25 nm, i.e. Gb = 17 MPa µm, and the hardening
anisotropy ratio q = 1.5; the self-hardening h = 500 MPa
has been deduced for Ni from the graphs in [3]. The min-
imization of J̄C(L, ξ) yields: ξ = 5.7, i.e. θroll ≈ 80◦ and
L ≈ 0.05 µm. The fitting parameter h̃ ≈ −0.3 MPa µm
can be interpreted as an indicator of a back stress lamella
boundary resistance. The part of the flow stress caused
by the cells is Gb/L ≈ 350 MPa. These values correspond
roughly to the measured data presented in [3].

4. Conclusions

• The deformation bands in the form of lamellae filled
with the bamboo cells dominate the deformation
microstructure at very high strains. The resistance
to the dislocation flow through the laminar struc-
ture determines the maximum strength achievable
by plastic deformation.

• The variational formulation shows that due to
anisotropic hardening, an inhomogeneous deforma-
tion leading to the lamellae formation is energeti-
cally more favorable than the homogeneous defor-
mation.

• Despite drastic simplification, the proposed model
points to two main reasons for the formation of
the laminar structure; hardening anisotropy, and
dislocation cells and lamella boundaries.
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