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Applications of fractional calculus in the constitutive relation lead to the fractional derivatives models. They

are stately generalization of the integer derivatives models — this general form makes fractional derivatives models
more flexible and suitable to describe properties and behavior of different materials/structures. In the present work,
the general strain deformation gradient has been presented by using the modified conformable fractional derivatives
definition. Within this approach the fractional Euler–Bernoulli beam theory has been formulated and applied to
the analysis of free vibration, bending and buckling of micro/nanobeams which exhibit strong scale effect.
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1. Introduction

Fractional calculus has become an exciting new math-
ematical method of solution of diverse problems in math-
ematics, science, and engineering [1–3]. Recent advances
of fractional calculus are dominated by modern exam-
ples of applications in differential and integral equations,
physics, signal processing, fluid mechanics, viscoelastic-
ity, mathematical biology and electrochemistry [4].

Applications of fractional calculus have been brought
to applied mechanics’ problems and leads to fractional
derivatives models (FDMs). Many authors pointed out
that derivatives and integrals of non-integer order are
very suitable for the description of properties of various
real materials [5]. These models are the generalized form
of classical models, therefore, they are able to describe
the behavior of materials better than integer derivatives
models (IDMs). For instance, Challamel et al. [6] by us-
ing fractional derivatives (FDs) generalized the Eringen
nonlocal theory and showed that the optimized fractional
derivative model has a perfect matching with the disper-
sive wave properties of the Born–Kármán model of lattice
dynamics and is better than the classical Eringen the-
ory. Also Demir et al. [7] studied vibration of viscoelastic
beam that obeys a fractional differentiation constitutive
law and stated that FDs are useful for describing the
occurrence of vibrations in engineering practice. FDMs
have been introduced in different problems, Sumelka [8]
applied fractional calculus to a classical problem of the
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structural mechanics and introduced nonlocal Kirchhoff–
love plate theory. Atanackovic and Stankovic [9] modified
the kinematics strain–displacement relationship with an
alternative nonlocal formulation and by using the Ca-
puto fractional derivatives generalized wave equation in
nonlocal elasticity. Lazopoulos [10] assumed that strain
energy density depends not only on the local strain but
also on a fractional derivative of the strain. Carpinteri
et al. [11] by means of attenuation function of strain and
the Caputo fractional derivatives introduced a fractional
calculus approach to the nonlocal elasticity.

In the present work, the general strain deformation
gradient has been presented by using modified con-
formable fractional derivatives definition (CFDD). The
fractional Euler–Bernoulli beam theory (FEBBT) has
been presented based on this general form and has two
free parameters: fractional parameter (which control the
displacement’s derivative in strain-displacement relation)
and length scale parameter to consider size effects in the
micron and the sub-micron scales. Finally, vibration of
clamped-clamped (C-C) microbeams under axial force
and free vibration, bending and buckling of nanobeam
have been studied by the theory. It should be empha-
sized that compared to the previous papers [12–14] the
novelty lays in the definition of the constitutive relation
which is based on the fractional strain, as mentioned,
whereas in [12, 13] the constitutive relation is based on
the general form of the Eringen nonlocal elasticity the-
ory, and in [14] the formulation is based on the fractional
strain energy.

This paper has been divided into four sections: 1. Us-
ing fractional Taylor series expansion and the CFDD, the
general form of the deformation gradient has been intro-
duced. 2. The FEBBT based on the general form of
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the strain has been presented which has two free param-
eters: fractional parameter to control the displacement
derivative in the constitutive relation and the length
scale parameter to consider the size effects in micron
and sub-micron scales. 3. To demonstrate the func-
tionality of FEBBT the non-dimensional frequency of
the microbeams under axial force has been compared
with the experimental data and EBT. 4. Bending,
buckling and vibration of nanobeams has been studied
based on the FEBBT.

2. Basic definitions and tools

In this section, the basic definitions that are neces-
sary for the theory are introduced namely the fractional
derivatives definition and the fractional Taylor series
expansion.

2.1. Modified conformable fractional
derivatives definition

Modified CFDD is a definition, which has been pre-
sented by Khalil et al. [15] and Tallafha et al. [16] is:

Let f, g : R→ R. Then modified CFDD is

Dα(f)(x) =
∂αf

∂xα
= |x|(dαe−α) ddαef(x)

|dx|dαe
. (1)

According to the modified CFDD, its application to the
multi-variable functions (Appendix A) reads:

Dα
x(g)(x, y) =

∂αg

∂xα
= |x|(dαe−α) ∂

dαeg(x, y)

|∂x|dαe
,

Dα
y (g)(x, y) =

∂αg

∂yα
= |y|(dαe−α) ∂

dαeg(x, y)

|∂y|dαe
, (2)

where α ∈ (0,∞], f is (n+ 1)-differentiable at x > 0 and
dαe is the smallest integer greater than or equal to α.

2.2. Fractional Taylor series expansion

Fractional Taylor series expansion (FTSE) is a gener-
alization of the one presented in [17].

Assume that f is an infinitely α−differentiable func-
tion, for some 0 < α ≤ 1 at a neighborhood of a point
x0. Then f has the fractional power series expansion in
the form

f(x) =

∞∑
0

(Dα
x0
f)(k) |(x− x0)|kα

αkk!
,

x0 −R1/α < x < x0+R1/α, R > 0, (3) (3)
where (Dα

x0
f)(k) means the application of the fractional

k times derivative.

3. General form of strain in terms
of fractional calculus

The general form of strains is obtained by general-
ization of the displacement derivatives in the strain-
displacement relation, namely the first derivatives are
substituted with derivatives of order α. Parameter α

can be integer and non-integer number between 0 and
1 (0 < α ≤ 1) [9] and leads to the appearance of the
fractional calculus in the equation of the motion.

The general form of strain presented already by
Sumelka [8, 18] and Atanackovic and Stankovic [9] where
based on the Riesz–Caputo definition in which the inte-
gral form makes the numerical solution of the governing
equation difficult. In the present work, the general form
has been presented based on modified CFDD and un-
like previous works, its usability has been studied from
two part of view: 1. geometrical view, by using fractional
Taylor series expansion method, 2. continuum mechanics
view. In addition, the use of the modified CFDD makes
the numerical solution of the governing equation simpler.

3.1. Geometrical derivation of the general strains

FDs allow us to make a generalization of integer deriva-
tives, and therefore in this part by using FTSE we present
a general form of deformation gradient and improve the
strain tensor by assuming a general form as below.

Consider a two-dimensional deformation of an in-
finitesimal rectangular material element with dimensions
dxα by dyα where 0 < α ≤ 1 but with this proviso that
value of alpha satisfies the small deformation theory. It
means that the value of α must not be too small — af-
ter the deformation rectangular material element should
take the form of a rhombus. Based on small deformation
theory and fractional Taylor series expansion we have:
u (x+ dx, y) ≈ u(x, y) + 1

α
∂αu
∂xα |dx|α with similar expan-

sions for all other terms — for α =1 the classical form is
obtained of course.

Next, based on Eq. (1):

u (x+ dx, y) ≈ u(x, y) +
1

α

(
|x|1−α ∂u

∂x
|dx|α

)
, (4)

so from the geometry of the deformed element
( 1
α
∂αv
∂xα |dx|α � 1) we have

A′B′=

√(
|dx|α +

1

α

∂αu

∂xα
|dx|α

)2

+

(
1

α

∂αv

∂xα
|dx|α

)2

≈(
1 +

1

α

∂αu

∂xα

)
|dx|α . (5)

Note that when α→ 0 then 1
α
∂αv
∂xα |dx|α or 1

α
∂αx
∂xα |dx|α →

∞
(
1
α
∂αv
∂xα |dx|α << 1

)
since 0 < α ≤ 1.. The normal

strain in the x-direction of the rectangular element is de-
fined by:

εx =
A′B′ −AB

AB
, (6)

and knowing that AB = dxα, we have

εx = (lα−1)
1

α

∂αu

∂xα
. (7)

Similarly, the normal strain in the y-direction and z-
direction becomes

εy = (lα−1)
1

α

∂αv

∂yα
, εz =

1

α
lα−1

∂αw

∂zα
, (8)

where lα−1 is the length scale parameter similarly like in
the classical non-local gradient methods and fractional
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nonlocal Kirchhoff theory [8]. The introduction of the
length scale, allows finally to obtain dimensionless quan-
tity and lets one to consider the size-dependence effects
for micron and sub-micron scales.

The engineering shear strain, or the change in the an-
gle between two originally orthogonal material lines (in
this case line AB and AC) is defined as:

γxy =
π

2
−∠C ′A′B′ (9)

where C ′A′B′ is line’s angle in the deformed element.
For small deformations, α = tanα and β = tanβ, shear
strain by neglecting higher-order terms in the displace-
ment gradients (for small displacement gradient we have
1
α
∂αu
∂xα � 1 and 1

α
∂αu
∂yα � 1) can be then expressed as

γxy =
1
α
∂αv
∂xα dxα

dxα + 1
α
∂αu
∂xα dxα

+

1
α
∂αu
∂yα dyα

dyα + 1
α
∂αu
∂yα dyα

=

1

α
lα−1

(
∂αv

∂xα
+
∂αu

∂yα

)
. (10)

By considering similar behaviors in the y–z and x–z
planes, these results can be easily extended to the general
three-dimensional case.

Now the fractional strain-displacement relations are

εx=
1

α
lα−1

∂αu

∂xα
, εy=

1

α
lα−1

∂αv

∂yα
, εz=

1

α
lα−1

∂αw

∂zα
,

γxy =
1

α
lα−1

(
∂αv

∂xα
+
∂αu

∂yα

)
,

γzx =
1

α
lα−1

(
∂αw

∂xα
+
∂αu

∂zα

)
,

γyz =
1

α
lα−1

(
∂αv

∂zα
+
∂αw

∂yα

)
. (11)

For completeness the two-dimensional geometric frac-
tional strain deformation has been shown in Fig. 1.

Fig. 1. Two-dimensional geometric fractional strain
deformation.

3.2. Continuum view
One considers a continuum body B, as the set of ele-

ments X whom the reference and the current configura-

tions are R and C, respectively. The regular motion of
the material body B can be written as

x = ℵ(X, t) or xi = ℵi(X, t), (12)
where the mapping function ℵ gives the position x for
each particles X for all times t. Its inverse due to conti-
nuity assumption exists as

X = N(x, t) or XA = NA(x, t), (12)
and states that the particle X is located at position x at
time t. Forasmuch, as in the deformation just two sta-
tionary configurations have been considered and disre-
gard any consideration by which the final deformed con-
figuration is reached from the initial undeformed config-
uration, so the time variable is eliminated and x = ℵ(X)
and X = N(x).

The mapping function is continuous, so

dxi =
∂ℵi(X)

∂XA
dXA = xi,AdXA, (14)

where the deformation gradient tensor is [19]:

xi,A ≡ FiA =
∂ℵi(X)

∂XA
(15)

Rewriting Eq. (14) leads to the following form:
dx = F · dX. (16)

F is invertible, so that the inverse F−1 exists, therefore
dX = F−1 · dx, F−1 = XA,i. (17)

We can generalize the deformation gradient and its in-
verse as follows:

GFiA =
∂αℵi(X)

∂Xα
A

=
lα−1

α
|X|1−α ∂ℵi(X)

∂XA
=

lα−1

α
|X|1−αA FiA,

GF−1Ai =
∂αNA(X)

∂xαi
=
lα−1

α
|x|1−α ∂NA(X)

∂xi
=

lα−1

α
|xi|1−α FiA, (18)

where l is the length scale of the isotropic material and
leads to the dimensional less quantity similarly like in the
non-local gradient methods.

3.2.1. Rigid body motion
It should be emphasized that it is crucial to ob-

serve how the fractional deformation gradients trans-
forms under isomorphism (superimposed rigid-body mo-
tions). There is a condition for the rigid body motion,
which is satisfied by classical strain.

The Lagrangian finite strain tensor is
2E = C − I, (19)

where C = FT · F and I is an identity matrix. For the
classical rigid body motion

C = I → FT · F = I. (20)
Now, for the general form of the strains the following
condition must be satisfied:

GFT · GF = I. (21)
Two categories have been considered for value of α: (1)
α = 1 (classical strain form), (2) α 6= 1 (the fractional
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strain form). In the case of α = 1 Eq. (20) is valid, but
for α 6= 1:

GFT · GF = I →(
lα−1

α
|XA|α−1

)
FT.

(
lα−1

α
|XB |α−1

)
F = I. (22)

With respect to Eq. (20), the following condition must
satisfy(

lα−1

α
|XA|1−α

)
=

(
lα−1

α
|XB |1−α

)
= 1→

X = α1−αl. (23)

3.3. Fractional Euler–Bernoulli beam theory

In the previous sections, the general form of strain-
displacement relations has been obtained based on the
modified CFDD. Now, these relations will be used in the
one of the structural mechanics problem — beam’s equa-
tions of the motion — and the FEBBT will be presented.
3.3.1. Equation of motion

A schematic view of a beam under distributed and
axial forces has been shown in Fig. 2. Assume that its
displacement field is

u0 = −zwx, v0 = 0, w0 = w(x, t), (24)
where u0, v0 and w0 denote the components of displace-
ment parallel to x-, y- and z-direction. The classical
equation of motion of the Euler–Bernoulli beam is [20]:

Mxx + f(x, t) + pwxx = ρAwtt, 0 < x < L, (25)

where M(x, t) =
∫ h/2
−h/2 σzdz, A is cross-section of the

beam, ρ is density, p and f are axial and transverse
forces. According to the fractional strain-displacement

Fig. 2. A schematic view of a beam under distributed
and axial forces.

relations and Eq. (24) the M(x, t) obtains the form as
below

M(x, t) = −EI
(

1

α
lα−1x1−αwxx

)
, (26)

where E is Young’s modulus, h is the beam thickness
and I is the effective moment of inertia. Now, by substi-

tuting the second derivative of Eq. (26) into Eq. (25) the
fractional dynamics equation is obtained

EI

(
1

α
lα−1x1−αwxxxx

)
+ EI

(
2

α
lα−1 (1− α)x−αwxxx

)
+EI

(
1

α
lα−1 (1− α) (−α)x−1−αwxx

)
+mwtt

= pwxx + f (x, t) , 0 < x < L. (27)
For convenience, the following non-dimensional parame-
ters are utilized:

ŵ =
w0

L
, x̂ =

x

L
, t̂ =

t

T
,

T =

√
ρAL4

EI
, S1 = (

1

α
lα−1L−α+1),

S2 = (
L2

EI
), S3 =

L3

EI
.

Then the non-dimensional form of Eq. (27) is
S1[x̂1−αŵxxxx + 2(1− α)x̂−αŵxxx

+(1− α)(−α)x̂−1−αŵxx] + ŵtt=S2pŵxx + S3f(x̂, t̂),

0 < x̂ < 1 (28)
It should be noted that when α = 1 the classical equation
of motion of the Euler–Bernoulli beam is obtained.

3.3.2. Vibration, bending and buckling of nanobeams
based on the FEBBT

In this section, we show the effects of the fractional
parameter and the length scale parameter on the free
vibration, bending and buckling of nanobeams.

3.3.2.1. Vibration
In the vibration analyses, we neglect the effect of trans-

verse loading on the beam, in the other words for analysis
of the frequency of the beam under axial load, Eq. (28)
reduces to the following form:

S1[x̂1−αŵxxxx + 2(1− α)x̂−αŵxxx

+(1− α)(−α)x̂−1−αŵxx] + wtt − S2pŵxx = 0. (29)
Using modified CFDD the governing equations are eas-
ily solved by the classical numerical schemes, therefore
here to calculate the non-dimensional frequency of the
nanobeam we use the Galerkin weighted residual method.
Based on this method we assume

w(x, t) ≈
n∑
i=1

ϕi(x)qi(t), (30)

where ϕi(x) and qi(t) are the mode shape and a time
dependent function to be determined, respectively. Sub-
stituting Eq. (30) into Eq. (29) yields

S1[x̂1−α
n∑
i=1

ϕ
(4)
i (x̂)qi(t̂) + 2(1− α)x̂−α

×
n∑
i=1

ϕ′′′i (x̂)qi(t̂) + (1− α)(−α)x̂−1−α
n∑
i=1

ϕ′′i (x̂)qi(t̂)]

+

n∑
i=1

ϕi(x̂)q̈i(t̂)− S2p

n∑
i=1

ϕ′′i (x̂)qi(t̂) = ε. (31)
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Next, by multiplying the result by the mode shape and
integrating outcome from 0 to 1 we have

Mq̈(t̂) +Kq(t̂) = 0. (32)
where

M =

1∫
0

ϕiϕj dx̂,

K =

1∫
0

[S1(x̂1−αϕ′
′′′
j + 2(1− α)x̂−αϕ′′′j

+(1− α)(−α)x̂−1−αϕ′′j )ϕi + S2ϕ
′′
jϕi]dx̂. (33)

The non-dimensional eigenproblem of the beam is then
[Mω2 + S1K]q̄ = 0. (34)

3.3.2.2. Bending
The static deflection is obtained from Eq. (28) by set-

ting axial force and the inertial term to zero as below
S1[x̂1−αŵxxxx + 2(1− α)x̂−αŵxxx

+(1− α)(−α)x̂−1−αŵxx] = S3f(x̂, t̂). (35)
To solve Eq. (35) the Galerkin method is used again.
The transverse displacement of the beam is as below

w(x) ≈
n∑
i=1

aiϕi(x). (36)

Substituting Eq. (36) into Eq. (35) one has

S1[x̂1−α
n∑
i=1

ϕ
(4)
i (x̂)qi(t) + 2(1− α)x̂−α

×
n∑
i=1

ϕ′′′i (x̂)qi(t) + (1− α)(−α)x̂−1−α

×
n∑
i=1

ϕ′′i (x̂)qi(t)] = S3f(x̂, t̂). (37)

Multiplying Eq. (37) by ϕi, as a weight function in
the Galerkin method, and integrating the outcomes from
x = 0 to 1, the set of algebraic equations is obtained
(Eq. (38)). By solution of these algebraic equations, the
deflection of nanobeam can be determined in a form

Fi =

n∑
j=1

Kijaj , i = 1, 2, . . . , n, (38)

where

Kij = S1

1∫
0

(x̂1−αϕ′
′′′
j + 2(1− α)x̂−αϕ′′′j

+(1− α)(−α)x̂−1−αϕ′′j )ϕidx̂,

Fi =

1∫
0

S3f(x, t)ϕidx̂.

3.3.2.3. Buckling
The buckling load is obtained from Eq. (28) by setting

the transverse force and the inertia term to zero, so the
governing equation is

S1[x̂1−αŵxxxx + 2(1− α)x̂−αŵxxx

+(1− α)(−α)x̂−1−αŵxx] = S2pŵxx. (39)
Next, by assuming the axial force p = −pcr and applying
the Galerkin method, the buckling load reads

pcr =
Kf

K
,

where

Kf = S1

1∫
0

(x̂1−αϕ′
′′′
j + 2(1− α)x̂−αϕ′′′j

+(1− α)(−α)x̂−1−αϕ′′j )ϕidx̂,

K = S2

1∫
0

ϕ′′jϕidx̂.

3.3.3. Results
This part contains two sections. In the first section,

to demonstrate the functionality of FEBBT, the non-
dimensional frequency of micro C-C beams under axial
force has been studied and in the second section, the
effects of the fractional and the non-dimensional length
scale parameters have been shown on the free vibration,
bending and buckling of nanobeams. It is important that
the results of Sect. 3.3.3.1 are contrasted with the exper-
imental data [20].
3.3.3.1. Is the FEBBT is more efficient than the Euler–
Bernoulli theory (EBT)?

In this section, to validate our fractional theory and
to show that FEBBT is more appropriate than EBT,
the vibration of C-C micro beams under axial force has
been studied. A comparison has been done between
experimental results [21] and the FEBBT and EBT. In
Table I the physical properties of the microbeam have
been shown and the value of axial force is 0.0009 N.

TABLE IGeometrical and physical proper-
ties of the micro C-C beams

Property Value
length [µm] 210,310,410,510
width [µm] 100
height[µm] 1.5
Young modulus [GPa] E/(1 − υ) = 166

density [kg/m3] ρ = 2329

The fractional parameter and the length scale parameter
give us the ability to describe the behavior of materials
better than the classical EBT. Figure 3 shows the effects
of different length scale parameter (λ = l/L) on the non-
dimensional frequency for L = 210 µm when 0<α≤1.
For λ = 0.2, λ = 0.4 and λ = 0.6 decreasing α from 1 to
0.1 causes the increase in the non-dimensional frequency.
Table II shows the calculated non-dimensional frequency
of different microbeams based on FEBBTs and EBT.
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TABLE II

The compression of the non-dimensional frequency of C-C micro beams based on the FEBBT and EBT with experimental
data [20] (p = 0.0009 N, λ = 1, error = absolute number of (experimental value – calculated value))

α (fractional parameter) Experimental
0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1(EBT) [20]

L = 210 322.74 322.73 322.73 322.76 322.83 322.95 323.11 323.31 323.55 323.84 324.17 324.55 322.05
error1 0.69 0.68 0.68 0.71 0.78 0.90 1.06 1.26 1.50 1.79 2.12 2.50 -

L = 310 162.65 162.65 162.64 162.66 162.69 162.74 162.80 162.89 162.99 163.11 163.25 163.41 163.22
error2 0.57 0.57 0.58 0.56 0.53 0.48 0.42 0.33 0.23 0.11 0.03 0.19 -

L = 410 103.41 103.40 103.40 103.40 103.42 103.45 103.48 103.52 103.58 103.64 103.71 103.79 102.17
error3 1.24 1.23 1.23 1.23 1.25 1.28 1.31 1.35 1.41 1.47 1.54 1.62 -

L = 510 74.55 74.55 74.55 74.55 74.56 74.58 74.59 74.62 74.65 74.69 74.73 74.77 73.79
error4 0.76 0.76 0.76 0.76 0.77 0.79 0.80 0.83 0.86 0.90 0.94 0.98 -
4∑
1

error 3.26 3.24 3.24 3.27 3.34 3.44 3.59 3.77 4.00 4.26 4.62 5.29 -

Fig. 3. Effects of fractional parameter α and length
scale parameter λ on the non-dimensional frequency ω1

of fractional Euler–Bernoulli micro C-C nanobeam (p =
0.0009 N, L = 210 µm).

Fig. 4. The compression of calculated the errors of the
FEBBT and EBT. Blue columns show error of FEBBT
and red columns show the error of EBT.

The errors are the difference between experimentally
measured frequencies and the calculated ones. It is vis-
ible from Table II that the errors of FEBBT are lower
than the errors of EBT. As it can be seen, FEBBT re-
duces the sum of the error from 5.29 kHz to 3.24 kHz. In
addition, FEBBT reduces the error for each lengths, for

instance in L = 210 µm FEBBT reduces the error from
2.5 kHz to 0.68 kHz, for L = 310 µm from 0.19 kHz to
0.03 kHz, for L = 410 µm from 1.62 kHz to 1.23 kHz and
for L = 510 µm from 0.98 kHz to 0.76 kHz. In Fig. 4, the
error of the calculated non-dimensional frequencies based
on FEBBT and EBT has been compared. In Fig. 3 and
Table II, the values of errors show that FEBBT could be
more efficient than EBT.
3.3.3.2. Numerical results for free vibration, bending, and
buckling of nanobeams

In this section, the effects of the fractional parameter α
and the length scale parameter λ on the non-dimensional
frequency, non-dimensional center deflection and non-
dimensional buckling load of a simply supported nano
beam have been shown.

Free vibration of nano beam means the axial force is
zero (p = 0). In Table 3 and in Fig. 5, the effects of
the fractional parameter α and length scale parameter
λ have been shown on the first, second and third non-
dimensional frequency of simply supported beam. As it
can be seen from Table III and Fig. 4, decreasing of the
fractional parameter from 1 to 0.1 leads to the increase
of the first, the second and the third non-dimensional
natural frequencies. This increase for ω3 is larger than
for ω2 and ω1 and for ω2 is more than the ω1. In addition,
it can be seen that at the constant α the increase of λ
causes the decrease in the natural frequencies.

The non-dimensional center deflection of the simply
supported nanobeam has been shown in Table IV for dif-
ferent values of λ and α, when L/h has different values.
It is visible that for different L/h ratios when α decreases
from 1 to 0.1 the maximum non-dimensional deflection
decreases and this means that decrease of α increases the
stiffness of simply supported beams. In Fig. 6, the varia-
tion of the center deflection versus α for 5 values of λ has
been shown when L/h = 50. At the constant value of α,
increase of λ causes the increase in the center deflection,
so one can be said that it causes the decrease in the beam
stiffness, and it can be seen also that the variation of the
non-dimensional center deflection increases as the value
of λ decreases.
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TABLE IIINon-dimensional natural frequency of simply supported nanobeam (L = 10 nm, b = h = 0.1L, ρ = 1, λ = l/L)

Length
scale

Frequency α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
α = 1

(classical
theory)

λ = 0.2

ω1 46.99 31.66 24.64 20.36 17.39 15.16 13.42 12.02 10.85 9.87
ω2 187.23 125.73 97.64 80.54 68.72 59.95 53.13 47.67 43.20 39.48
ω3 420.86 282.39 219.13 180.65 154.09 134.40 119.15 106.96 97.03 88.83

λ = 0.4

ω1 34.40 23.99 19.34 16.54 14.62 13.20 12.10 11.21 10.48 9.87
ω2 137.06 95.29 76.60 65.42 57.79 52.19 47.88 44.48 41.72 39.48
ω3 308.09 214.01 171.92 146.73 129.57 117.00 107.38 99.80 93.73 88.83

λ = 0.6

ω1 28.66 20.40 16.78 14.64 13.21 12.17 11.38 10.77 10.27 9.87
ω2 114.20 81.02 66.47 57.92 52.22 48.12 45.06 42.71 40.89 39.48
ω3 256.71 181.97 149.18 129.93 117.08 107.89 101.04 95.83 91.85 88.83

λ = 0.8

ω1 25.18 18.18 15.17 13.43 12.29 11.49 10.90 10.46 10.12 9.87
ω2 100.33 72.22 60.10 53.13 48.59 45.43 43.15 41.50 40.30 39.48
ω3 225.53 162.19 134.89 119.18 108.96 101.86 96.78 93.12 90.53 88.83

λ = 1

ω1 22.77 16.63 14.03 12.56 11.63 10.99 10.54 10.23 10.01 9.87
ω2 90.75 66.05 55.59 49.69 45.96 43.45 41.73 40.58 39.86 39.48
ω3 203.99 148.34 124.76 111.47 103.04 97.41 93.59 91.06 89.53 88.83

TABLE IVCenter deflection of simply supported nanobeam subjected to uniform load f̄ (L = 10 nm, E = 169 GPa,
f̄ = 10, λ = l/L)

L/h
Length
scale

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
α = 1

(classical
theory)

100

λ = 0.2 0.474 1.011 1.622 2.318 3.114 4.027 5.074 6.276 7.657 9.243
λ = 0.4 0.885 1.761 2.635 3.513 4.404 5.313 6.246 7.209 8.207 9.243
λ = 0.6 1.274 2.435 3.499 4.481 5.394 6.249 7.054 7.818 8.546 9.243
λ = 0.8 1.651 3.065 4.280 5.325 6.229 7.011 7.690 8.281 8.796 9.243
λ = 1 2.018 3.664 5.003 6.088 6.964 7.665 8.223 8.659 8.994 9.243

75

λ = 0.2 0.150 0.320 0.513 0.733 0.985 1.274 1.605 1.986 2.423 2.924
λ = 0.4 0.280 0.557 0.834 1.112 1.394 1.681 1.976 2.281 2.597 2.924
λ = 0.6 0.403 0.770 1.107 1.418 1.707 1.977 2.232 2.474 2.704 2.924
λ = 0.8 0.522 0.970 1.354 1.685 1.971 2.218 2.433 2.620 2.783 2.924
λ = 1 0.639 1.159 1.583 1.926 2.203 2.425 2.602 2.740 2.846 2.924

50

λ = 0.2 0.030 0.063 0.101 0.145 0.195 0.252 0.317 0.392 0.479 0.578
λ = 0.4 0.055 0.110 0.165 0.220 0.275 0.332 0.390 0.451 0.513 0.578
λ = 0.6 0.080 0.152 0.219 0.280 0.337 0.391 0.441 0.489 0.534 0.578
λ = 0.8 0.103 0.192 0.267 0.333 0.389 0.438 0.481 0.518 0.550 0.578
λ = 1 0.126 0.229 0.313 0.381 0.435 0.479 0.514 0.541 0.562 0.578

30

λ = 0.2 0.004 0.008 0.013 0.019 0.025 0.033 0.041 0.051 0.062 0.075
λ = 0.4 0.007 0.014 0.021 0.028 0.036 0.043 0.051 0.058 0.066 0.075
λ = 0.6 0.010 0.020 0.028 0.036 0.044 0.051 0.057 0.063 0.069 0.075
λ = 0.8 0.013 0.025 0.035 0.043 0.050 0.057 0.062 0.067 0.071 0.075
λ = 1 0.016 0.030 0.041 0.049 0.056 0.062 0.067 0.070 0.073 0.075

Fig. 5. The effects of the fractional parameter (α) and the length scale parameter (λ) on the non-dimensional frequency
of the fractional Euler–Bernoulli simply supported nanobeam. From left: (1) The first non-dimensional frequency (ω1),
(2) the second non-dimensional frequency (ω2), (3) the third non-dimensional frequency (ω3).
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TABLE VNon-dimensional critical buckling load (p̄cr = pcr( L2

EI
)) of simply supported nanobeam (L = 10 nm,

b = h = 0.1L, λ = l/L)

Length
scale

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
α = 1

(classical
theory)

λ = 0.1 417.461 176.797 99.961 63.669 43.316 30.742 22.476 16.802 12.784 9.870
λ = 0.2 223.712 101.543 61.533 42.006 30.629 23.298 18.256 14.627 11.927 9.870
λ = 0.3 155.313 73.414 46.328 32.935 25.009 19.810 16.165 13.488 11.454 9.870
λ = 0.4 119.884 58.321 37.878 27.713 21.658 17.657 14.829 12.734 11.129 9.870
λ = 0.5 98.072 48.786 32.401 24.241 19.372 16.149 13.868 12.178 10.883 9.870
λ = 0.6 83.230 42.165 28.518 21.729 17.684 15.013 13.130 11.742 10.687 9.870
λ = 0.7 72.448 37.273 25.601 19.809 16.372 14.116 12.537 11.385 10.523 9.870
λ = 0.8 64.244 33.497 23.317 18.284 15.315 13.381 12.045 11.085 10.383 9.870
λ = 0.9 57.783 30.485 21.471 17.036 14.439 12.766 11.626 10.827 10.262 9.870
λ = 1 52.555 28.020 19.945 15.993 13.698 12.239 11.265 10.601 10.154 9.870

Fig. 6. The effects of the fractional parameter α and
the length scale parameter λ on the non-dimensional
center deflection of the fractional Euler–Bernoulli sim-
ply supported nanobeam (L/h = 50).

Fig. 7. The effects of the fractional parameter α and
the length scale parameter λ on the non-dimensional
buckling load of the fractional Euler–Bernoulli simply
supported nanobeam (L/h = 100).

Finally, in Table V the non-dimensional buckling load
has been shown based on FEBBT and EBT when L/h =
100. The non-dimensional buckling loads calculated by
the EBT are smaller than those one calculated by the
FEBBT. From Table V, decrease of α from 1 to 0.1 causes
the decrease in the non-dimensional buckling load and
when α is constant the increase of λ causes decrease of
buckling load. In Fig. 7, the non-dimensional buckling
load versus α for different values of λ has been shown.
As it can be seen, the variation of the non-dimensional
buckling load increases as the value of λ decreases.

4. Conclusion
The general form of the strain and the fractional defor-

mation gradient has been presented based on the mod-
ified CFDD. Its formulation has been studied based on
two concepts: (1) the geometrical — by using fractional
Taylor series expansion method and (2) the continuum
mechanics’ view.

The presented FEBBT is based on this general form of
strain. The FEBBT two additional free parameters ap-
pear: the fractional parameter to control the order of the
displacement in constitutive relation; and the length scale
parameter to consider the size effects in micron and sub-
micron scales. To show that that FEBBT can be more
efficient than classical EBT the vibration of micro C-C
beams under axial force was studied and it was shown
that the errors of the calculated non-dimensional frequen-
cies compared to the experimental evidence is smaller for
the FEBBT compared to the results obtained by EBT.

Finally, the effects of the fractional parameter and the
length scale parameter were studied on the free vibration,
bending and buckling of simply supported nanobeam. It
appeared that when the length scale parameter is con-
stant, decrease of the fractional parameter from 1 to 0.1
increases both the natural frequencies, the buckling load,
and decreases the maximum deflection of nanobeam. On
the other hand, when the fractional parameter is con-
stant, the increase of the non-dimensional length scale
from 0 to 1 decreases both the natural frequency and
the buckling load, and increases center deflection of the
nanobeam.
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Appendix A

Conformable fractional derivatives for multi-variables
function:

Assume the function f(x, t), we have

fx(x, y) =
df(x, y)

dx
= lim
h→0

f(x+ h, y)− f(x, y)

h
,

fy(x, y) =
df(x, y)

dy
= lim
h→0

f(x, y + h)− f(x, y)

h
. (A1)

Based on modified CFDD we have

fαx (x, y) =
dαf(x, y)

dxα
=

lim
ε→0

f (dαe−1)(x+ εx(dαe−α), y)− f (dαe−1)(x, y)

ε
,

fαy (x, y) =
dαf(x, y)

dyα
=

lim
ε→0

f (dαe−1)(x, y + εy(dαe−1))− f (dαe−1)(x, y)

ε
. (A2)

If 0 < α ≤ 1, let h = ε |x|α−1 , h = ε |y|α−1
then Eq. (A2) is

fαx (x, y) =
dαf(x, y)

dxα
= (A3)

lim
ε→0

f (dαe−1)(x+ ε |x|(dαe−1) , y)− f (dαe−1)(x, y)

ε
=

|x|1−α lim
h→0

f(x+ h, y)− f(x, y)

h
= |x|1−α df(x, y)

dx
,

fαy (x, y) =
dαf(x, y)

dyα
=

lim
ε→0

f (dαe−1)(x, y + ε |y|(dαe−1))− f (dαe−1)(x, y)

ε
=

|y|1−α lim
h→0

f(x, y)− f(x, y + h)

h
= |y|1−α df(x, y)

dy
.
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