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This work studies a new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation analytically. This

model is a version of the Kadomtsev–Petviashvili equation that addresses shallow water waves in (2+1)-dimensions.
Based on the Lie group method, the symmetry reductions and traveling wave reduction are obtained. Finally,
explicit solitons including the soliton solutions are constructed by a couple of integration methods, which are the
power series approach, subsidiary ordinary differential equation scheme, and the sine-Gordon expansion method.
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1. Introduction

Ocean dynamics especially in the context of shallow
water waves near shores and along beaches are all mod-
eled by various nonlinear evolution equations [1–15]. A
few of these well known models that describe the shallow
water wave dynamics are the Korteweg–de Vries equa-
tion, the Kawahara equation, the Boussinesq equation,
the Bona-Chen equation, Gardner’s equation and sev-
eral others. All of these models describe 1-dimensional
fluid flow where as the Bona-Chen equation describes the
two-layered fluid flow. However, a practical approach to
describe this dynamics of shallow water waves is from
a two-dimensional perspective. This is described by the
Kadomtsev–Petviashvili equation that was proposed ear-
lier. In this context, several results have been reported
and the model has been exhaustively studied.
This paper will study a version of the KP equation that
has been recently proposed by Wazwaz and El-Tantawy
and it was described in (3+1)-dimensions in order to look
at it from a generalized setting [1]. The Lie group analy-
sis as well as Frobenius’ series solution method, traveling
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wave hypothesis, sub ordinary differential equation (sub-
ODE) method and the sine-Gordon expansion method
are the integrability approaches that are adopted in this
paper. These algorithms reveal solitary waves, shock
waves and other solutions to the model that are novel
contributions in the field of ocean engineering. This new
model reads as

utx + uty + utz − uzz + uxxxy + 3(uxuy)x = 0. (1)
The rest of the paper will focus on the integrability
aspects of this paper using the Lie symmetry, travel-
ing wave hypothesis, series solutions approach, sub-ODE
scheme and the sine-Gordon expansion method. The de-
tails are in subsequent sections.

2. Lie symmetry analysis

In this section, we consider Eq. (1) using the Lie group
method. On the basis of the Lie group method, one can
get

ξt = (c1 − c2) t+ c4, (2)

ξx =
c1 (8t+ 2x+ 4z)

6
+
c2 (−4t− x+ z)

6
+ c6, (3)

ξy =
c2 (−y + z)

2
+ c1y + c5, (4)

ξz = c1z + c2t+ c3, (5)
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ηu = F1(t) + F2(t+ z) +
c1 (−6u+ 8x+ 8y)

18

+
c2 (3u− 4x− 4y)

18
, (6)

where F1(t) is arbitrary function of t, and F2(t + z) are
arbitrary functions of t+ z.

One can get the symmetries as follows:
V1 = ∂t, V2 = ∂x, V3 = ∂y, V4 = ∂z,

V5 = −t∂t +
−4t− x+ z

6
∂x +

−y + z

2
∂y

+t∂z +
3u− 4x− 4y

18
∂u,

V6 = t∂t +
8t+ 2x+ 4z

6
∂x + y∂y + z∂z

+
−6u+ 8x+ 8y

18
∂u,

VF1 = F1∂u, VF2 = F2∂u.

3. Symmetry reductions

In this section, we consider the symmetry reductions.

3.1. V1

For this case, we get the invariants are
ξ = x, η = y, θ = z. Therefore, the invariant func-
tion is f(ξ, η, θ) = u(x, y, z). Therefore, one can get the
following equation:
−fθθ + fξξξη + 3fξξfη + 3fξfξη = 0. (7)

It is clear that this equation still is a nonlinear partial
differential equation (PDE). Once again, we consider the
symmetry using the Lie group again. One has

Γξ =
(2c3 − c1) ξ

3
+ c5, (8)

Γη = c1η + c2, (9)

Γθ = c3θ + c4, (10)

Γf =
(−2c3 + c1) f

3
+ c6θ + c7. (11)

For this equation, we have the following symmetries:
V1 = ∂ξ, V2 = ∂η, V3 = ∂θ, V4 = ∂f , V5 = θ∂f ,

V6 =
2ξ

3
∂ξ −

2f

3
∂f , V7 = −ξ

3
∂ξ =

f

3
∂f .

3.2. V2

For this case, we get the following equations:
fτη + fτθ − fθθ = 0. (12)

where the invariants are τ = t, η = y, θ = z and the
invariant function is f(τ, η, θ) = u(t, y, z). It is a linear

PDE. Once again, we consider the symmetry using Lie
group again. One has

Γf =
1

6
u (8tc1 − 2yc1 + 2zc1 − 3yc5 + 3zc5

−12zc8 + 6c11) + F3, (13)

Γη =
2

3
z2c1 + c3 + y2c5 + y

(
c4 + z

(2c1
3
−c5 + 4c8

))
+z (c2 − 2c7 + c10) , (14)

Γθ =
1

6

(
− 2y2c1 + 3y2c5 − 12y2c8

+z
(
3 (2c2 + c4 − z (2c1 + c5 − 4c8))+8y (c1 + 3c8)

))
+
1

6

(
6c9 + 6yc10 + 4t

(
− 4zc1 + y (2c1 − 3c5 + 12c8)

+3 (c2 − 2c7 + c10)
))
, (15)

Γτ =
1

12

(
− 32t2c1 + 3

(
c3 − zc4 + 4c6 + 4zc7 + 4y2c8

+4z2c8 + y (c4 − 4c7 − 8zc8)− 2c9
))

− 1

12

(
4t
(
z (2c1 + 3c5 − 12c8)+y (−2c1 − 3c5 + 12c8)

+3 (c2 − 6c7 + 3c10)
))
. (16)

In addition we have the constraint conditions
F3θτ − F3θθ + F3ητ

= 0. (17)

3.3. V4
In this case, the invariants are ξ = x, η = y, τ = t and

the invariant function is f(ξ, η, τ) = u(x, y, t). Thus, one
can get the following equation:

fξτ + fητ + fξξξη + 3fξξfη + 3fξfξη = 0. (18)
As the same previous step, we obtain

Γξ =
c1ξ

3
+ c3t+ c4, (19)

Γη =
c1
3
η + c5, (20)

Γτ = c1τ + c2, (21)

Γf =
(x+ y) c3

3
− c1f

3
+ F4(t), (22)

where F4(t) is arbitrary function of t. For this equation,
we have the following symmetries:

V1 = ∂ξ, V2 = ∂η, V3 = ∂τ , VF = F4∂f ,

V4 =
ξ

3
∂ξ +

η

3
∂η + τ∂τ −

f

3
∂f ,

V5 = t∂ξ +
x+ y

3
∂f .
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4. Traveling wave reduction

In this section the governing Eq. (1) will be studied
with the help of traveling wave hypothesis with general
coefficients. This allows addressing (1) from a generalized
perspective. Therefore, the generalized form of (1) that
will be focused in this section will be

a1utx + a2uty + a3utz + b1uzz + b2uxxxy

+c (uxuy)x = 0. (23)
To study (23), the following traveling wave hypothesis is
selected:

u(x, y, z, t) = g (B1x+B2y +B3z − vt) = g(s), (24)
where

s = B1x+B2y +B3z − vt. (25)
Substituting (24) into (23) and integrating leads to

b2B
3
1B2h

′′ =
(
va1B1 + va2B2 + va3B3 − b1B2

3

)
h

−cB2
1B2h

2, (26)
where the notations h′ = dh/ds, h′′ = d2h/ds2 with
g′ = h are adopted. Next, multiplying both sides of ()
by h′ and integrating gives

h′ =

√
2c

3b2

(
3 (va1B1 + va2B2 + va3B3 − b1B2

3)

2cB2
1B2

− h
)
h

(27)
Integration of (27) and transforming back to its original
variables leads to the shock wave solution
u(x, y, z, t) = A tanh [B (B1x+B2y +B3z − vt)] , (28)
where parameters A and B are given by

A =
3

cB1

√
b2
B2

(va1B1 + va2B2 + va3B3 − b1B2
3), (29)

B =
1

2B1

√
va1B1 + va2B2 + va3B3 − b1B2

3

b2B2
. (30)

These shock wave solutions will exist provided
cB1 6= 0 (31)

and
b2B2

(
va1B1 + va2B2 + va3B3 − b1B2

3

)
> 0. (32)

5. Exact solutions
5.1. Exact solution with power series method

In this section, we deal with the exact solutions of
(24). We can get the solutions of other equations in the
same way. Now, we assume Eq. (1) has a solution as
follows:

f(ξ) = c0 + c1ξ + c2ξ
2 + · · · =

∞∑
n=0

cnξ
n. (33)

Substituting (33) into (1), one has

(−3c− 1)c1 + (−3c− 1)

∞∑
n=1

(n+ 1)cn+1ξ
n

+3c21 + 3

∞∑
n=1

n+1∑
j=0

j(n+ 2− j)cjcn+2−jξ
n

+6c3 +

∞∑
n=1

(n+ 3)(n+ 2)(n+ 1)cn+3ξ
n = 0. (34)

We compare coefficients for n = 0 in (34), one obtains

c3 =
(3c+ 1)c1 − 3c21

6
. (35)

In general, for n ≥ 1, one has
cn+3 = (36)(
− 3c− 1

)(
n+ 1

)
cn+1 + 3

∑n+1
j=0 j

(
n+ 2− j

)
cjcn+2−j

(n+ 1)(n+ 2)(n+ 3)
.

In this case, the power series solution becomes
f(ξ) = c0 + c1ξ + c2ξ

2

+c3ξ
3 +

∞∑
n=1

cn+3ξ
n+3 =

c0 + c1ξ + c2ξ
2 +

(3c+ 1)c1 − 3c21
6

ξ3

+

∞∑
n=1

1

(n+ 1)(n+ 2)(n+ 3)

×
((
− 3c− 1

)(
n+ 1

)
cn+1

+3

n+1∑
j=0

j
(
n+ 2− j

)
cjcn+2−j

)
ξn+3.

Then, putting ξ = x+y+z− ct into above equation, one
can get
u(x, y, z, t) = c0 + c1(x+ y + z − ct) + c2(x+ y + z − ct)2

+c3(x+ y + z − ct)3 +
∞∑
n=1

cn+3(x+ y + z − ct)n+3 =

c0 + c1(x+ y + z − ct) + c2(x+ y + z − ct)2

+
(3c+ 1)c1 − 3c21

6
(x+ y + z − ct)3

+

∞∑
n=1

1

(n+ 1)(n+ 2)(n+ 3)

((
− 3c− 1

)(
n+ 1

)
cn+1

+3

n+1∑
j=0

j
(
n+ 2− j

)
cjcn+2−j

)
(x+ y + z − ct)n+3,

where ci(i = 0, 1, 2, 3) are arbitrary constants.

5.2. Exact solutions by sub-ODE method

Based on the sub-ODE method [8], we can assume
that Eq. (1) has the following solutions:

f(ξ) = a0 + a1ϕ. (37)
Here, we need to solve a0, a1, At the same time, ϕ(ξ)
needs to be satisfied by the following equation:

ϕ′ = A+Bϕ+ Cϕ2. (38)
Substituting (33) with (34) into (32), and collecting
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different coefficients for all of ϕ, then setting the coeffi-
cients equal to zero, we have

4AC −B2 = −3c− 1, B = B, C = C, c = c,

a1 = −2C, a0 = a0. (39)

It is well known that Eq. (38) has many solutions. We
can get exact solutions of Eq. (1) via solutions of Eq. (38).

Family 1: When ∆ = B2 − 4AC > 0 and BC 6= 0 (or
AC 6= 0),

u(x, t) = a0 − a1 1
2C

[
B +∆ tanh

(
∆
2 ξ
)]
, (40)

u(x, t) = a0 − a1 1
2C

[
B +∆ coth

(
∆
2 ξ
)]
, (41)

u(x, t)

= a0 − a1
1

2C
[B +∆ (tanh(∆ξ)± i sech(∆ξ))] ,(42)

u(x, t) =

a0 − a1
1

2C
[B +∆ (coth (∆ξ)± icsch (∆ξ))] , (43)

u(x, t) =

a0 − a1 1
4C

[
2B +∆

(
tanh

(
∆
4 ξ
)
+ coth

(
∆
4 ξ
))]

,(44)

u(x, t) =

a0 + a1
1
2C

[
−B +

√
(E2+F 2)∆−E∆ cosh(∆ξ)

E sinh(∆ξ)+F

]
, (45)

u(x, t) =

a0 + a1
1
2C

[
−B −

√
(F 2−E2)∆+E∆ sinh(∆ξ)

E cosh(∆ξ)+F

]
, (46)

where E and F are two non-zero real constants and
satisfy F 2 − E2 > 0.

u(x, t) = a0 + a1

[
2A cosh(∆

2 ξ)

∆ sinh(∆
2 ξ)−B cosh(∆

2 ξ)

]
, (47)

u(x, t) = a0 + a1

[
−2A sinh(∆

2 ξ)

−∆ cosh(∆
2 ξ)+B sinh(∆

2 ξ)

]
, (48)

u(x, t) = a0 + a1

[
2A cosh(∆ξ)

∆ sinh(∆ξ)−B cosh(∆ξ)± i∆

]
, (49)

u(x, t) = a0 + a1

[
2A sinh(∆ξ)

∆ cosh(∆ξ)−B sinh(∆ξ)±∆

]
, (50)

u(x, t) =

a0 + a1

[
4A sinh(∆

4 ξ) cosh(
∆
4 ξ)

−2B sinh(∆
4 ξ) cosh(

∆
4 ξ)+2∆ cosh2(∆

4 ξ)−∆

]
. (51)

Family 2: When ∆ = 4AC − B2 > 0 and BC 6= 0 (or
AC 6= 0),

u(x, t) = a0 + a1
1
2C

[
−B +∆ tan

(
∆
2 ξ
)]
, (52)

u(x, t) = a0 − a1 1
2C

[
B +∆ cot

(
∆
2 ξ
)]
, (53)

u(x, t) =

a0 + a1
1
2C [−B +∆ (tan (∆ξ)± sec (∆ξ))] , (54)

u(x, t) = a0 − a1 1
2C [B+∆ (cot (∆ξ)± csc (∆ξ))] , (55)

u(x, t) =

a0 − a1 1
4C

[
−2B +∆

(
tan

(
∆
4 ξ
)
− cot

(
∆
4 ξ
))]

, (56)

u(x, t) =

a0 + a1
1
2C

[
−B +

±
√

(F 2−E2)∆−E∆ cos(∆ξ)

E sin(∆ξ)+F

]
, (57)

u(x, t) =

a0 + a1
1
2C

[
−B +

±
√

(F 2−E2)∆+E∆ sinh(∆ξ)

E cos(∆ξ)+F

]
, (58)

where E and F are two non-zero real constants and
satisfy F 2 − E2 > 0.

u(x, t) = a0 + a1

[
−2A cos(∆

2 ξ)

∆ sin(∆
2 ξ)+B cos(∆

2 ξ)

]
, (59)

u(x, t) = a0 + a1

[
2A sin(∆

2 ξ)

∆ cos(∆
2 ξ)−B sin(∆

2 ξ)

]
, (60)

u(x, t) = a0 + a1

[
−2A cos(∆ξ)

∆ sin(∆ξ)+B cos(∆)±∆

]
, (61)

u(x, t) = a0 + a1

[
2A sin(∆ξ)

∆ cos(∆ξ)−B sin(∆)±∆

]
, (62)

u(x, t) =

a0 + a1

[
4A sin(∆

4 ξ) cos(
∆
4 ξ)

−2B sin(∆
4 ξ) cos(

∆
4 ξ)+2∆ cos2(∆

4 ξ)−∆

]
. (63)

Family 3: When A = 0 and BC 6= 0,

u(x, t) = a0 + a1

(
−Bd

C(d+cosh(Bξ)−sinh(Bξ))

)
,

u(x, t) = a0 + a1

(
− cosh(Bξ)+sinh(Bξ)
C(d+cosh(Bξ)+sinh(Bξ))

)
, (64)

where d is an arbitrary constant.
Family 4: When A = B = 0 and C 6= 0,

u(x, t) = a0 + a1

(
−1
Bξ+k

)
, (65)

where k is an arbitrary constant.
Remark 1: As a matter of fact, these solutions are

got from the following equation [7]:
ϕ =
√
4AC −B2

2C

C1 e
θ
2

√
4AC−B2 − C2 e

− θ
2

√
4AC−B2

C1 e
θ
2

√
4AC−B2

+ C2 e−
θ
2

√
4AC−B2

− B

2C
,

where C1, C2 are arbitrary constants. However, from
the physical point, these solutions may have different
meanings.
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5.3. Exact solution with sine-Gordon expansion method

Let us start under the assumption that travelling wave
transformation of Eq. (1) is of the form

u(x, y, z, t) = U(ξ), ξ = k1x+ k2y + k3z − νt, (66)
where ki(i = 1, 2, 3) and ν are constants, all of them
are to be determined. Substituting this hypothesis into
Eq. (1), we obtain

k31k2U
(4) + 6k21k2U

′U ′′

−(νk1 + νk2 + νk3 + k23)U
′′ = 0. (67)

Integrating (67) once with respect to ξ and choosing con-
stant of integration to be zero without any loss of gener-
ality, we arrive at the ordinary differential equation

k31k2U
′′′ + 3k21k2(U

′)2

−(νk1 + νk2 + νk3 + k23)U
′ = 0. (68)

In this context, sine-Gordon expansion method will be
applied to Eq. (1).

Balancing the terms U ′′′ and (U ′)2 by using homoge-
neous principle yields N = 1. Thus, the solution has the
form

U(ξ) = B1 sech(ξ) +A1 tanh(ξ) +A0, (69)
and therefore

U(w) = B1 sin(w) +A1 cos(w) +A0, (70)
where either A1 or B1 may be zero, but both A1 or B1

cannot be zero simultaneously.
By substituting Eq. (70) into Eq. (68) and simplifying,

we obtain the following nonlinear algebraic system:
k31k2B1 sin(w) cos

3(w) + (−4k31k2A1+

3k21k2B
2
1) sin

2(w) cos2(w) + (−5k31k2B1

−6k21k2B1A1) sin
3(w) cos(w) + (2k31k2A1

+3k21k2A
2
1) sin

4(w) + (−B1ν(k1 + k2 + k3)

−B1k
2
3

)
sin(w) cos(w) + (A1ν(k1 + k2 + k3)

+A1k
2
3

)
sin2(w) = 0.

Setting each summation of the coefficients of the trigono-
metric identities of like powers to zero, we recover the
following algebraic system of equations:
sin(w) cos(w) :

k31k2B1 −B1ν(k1 + k2 + k3)−B1k
2
3 = 0,

sin3(w) cos(w) :

−k31k2B1 − 5k31k2B1 − 6k21k2B1A1 = 0,

sin2(w) :

−4k31k2A1 + 3k21k2B
2
1 +A1ν(k1 + k2 + k3) +A1k

2
3 = 0,

sin4(w) :

4k31k2A1 − 3k21k2B
2
1 + 2k31k2A1 + 3k21k2A

2
1 = 0.

By solving the above system, we find Case 1:
A0 = A0, A1 = −k1, B1 = − ik1

ν =
k31k2 − k23
k1 + k2 + k3

, (71)

Case 2:
A0 = A0, A1 = −k1, B1 = ik1

ν =
k31k2 − k23
k1 + k2 + k3

, (72)

Case 3:
A0 = A0, A1 = −2k1, B1 = 0

ν =
4k31k2 − k23
k1 + k2 + k3

. (73)

According to Eqs. (69), (71)–(73) and inserting the re-
sult into the wave transformation (66), we obtain the
following solutions for KP equation, which are in terms
of hyperbolic functions:
From (69), we obtain

u1(x, y, z, t) =

− ik1 sech

(
k1x+ k2y + k3z −

k31k2 − k23
k1 + k2 + k3

t

)
−k1 tanh

(
k1x+ k2y + k3z −

k31k2 − k23
k1 + k2 + k3

t

)
+A0, (74)

and
u2(x, y, z, t) =

ik1 sech

(
k1x+ k2y + k3z −

k31k2 − k23
k1 + k2 + k3

t

)
−k1 tanh

(
k1x+ k2y + k3z −

k31k2 − k23
k1 + k2 + k3

t

)
+A0. (75)

From (70), one can see
u3(x, y, z, t) =

−2k1 tanh
(
k1x+ k2y + k3z −

4k31k2 − k23
k1 + k2 + k3

t

)
+A0. (76)

In the following, we have to do with the physical ex-
planation and the graphical representation of the de-
termined solutions of new (3+1)-dimensional general-
ized KP equation. The recovered solutions from case
1, case 2 and case 3, respectively, are hyperbolic func-
tion solutions. For k1 = 2, k2 = k3 = 1, y = z = 0.1
and A0 = 5, the solutions u1(x, y, z, t), u2(x, y, z, t) and
u3(x, y, z, t) are the travelling wave solutions with the in-
terval −10 ≤ x, t ≤ 10 for case 1, case 2 and case 3,
which are represented by Figs. 1, 2, and 3. The follow-
ing representations of Figs. 1–3 are obtained by the aid
of Maple.
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Fig. 1. The solution u1(x, y, z, t) for new (3+1)-
dimensional generalized KP equation.

Fig. 2. As in Fig. 1, but for the solution u2(x, y, z, t).

Fig. 3. As in Fig. 1, but for the solution u3(x, y, z, t).

6. Conclusions

This paper discussed a version of KP equation
from (3+1)-dimensions that is studied in mathematical
physics. Lie symmetry analysis, sub-ODE method, se-
ries solutions approach, sine-Gordon expansion method
as well as traveling wave hypothesis are all applied to
extract exact solutions to this KP equation. Solitary
waves, shock waves as well as other forms of solutions
are listed. These solutions are extremely useful in wide
spread areas. The results of this paper will be of great as-
set in further future research. This model will be studied
later with time-dependent coefficients, fractional tempo-
ral evolution, as well as stochastic coefficients. These just
form a tip of the iceberg. Those results will be reported
in future.
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