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Formation and Rearragement of Vortex Tubes
in a 3D Mesoscopic Superconductor with a Central Weak Link
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Vortex patterns are determined for a three-dimensional mesoscopic superconductor with one central weak

link, using the time-dependent Ginzburg–Landau equations. The vortex states are obtained for field orientation
parallel and perpendicular to the weak link, and vortex rearrangements are found to occur in the vortex patterns.
Tilting of the field leads to interesting phenomena caused by the small volume-to-surface ratio, as vortex tubes
are preferentially oriented along the field direction while they are forced to be perpendicular to the surface. In
addition, we can also observe the intersection of vortex tubes inside (or near) the weak link.
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1. Introduction

Mesoscopic superconductor exhibit very peculiar mag-
netic properties when their size is comparable to the
coherence length ξ [1]. The mesoscopic samples of dif-
ferent shapes surrounded by vacuum or an insulator
medium have been considered extensively both experi-
mentally and theoretically [2–10]. In experiment, the
measured superconducting phase boundary for the meso-
scopic Al square shows the direct experimental evidence
for these symmetry-induced vortex–antivortex pairs [11].
Recently, an experimental investigation was made of flux
jumps and irreversible magnetization of mesoscopic Al
superconducting rings, which indicated that the change
of vorticity with magnetic field could be larger than
unity [12]. A direct observation of vortex states in small
superconducting disks for vorticity L = 0 to 40 was
also reported [13]. Theoretically, it has been shown that
many different kinds of superconducting states can ex-
ist in mesoscopic samples [2, 5–11]. Vortices also show
very rich static and dynamic behavior in the presence
of a weak link [7, 10, 14]. It is well known properties
of both superconducting and normal metals are modified
due to the proximity effect [15] when they are in contact
with each other. Thus, the vortex–vortex interaction and
the vortex interaction with different kinds of defects and
interfaces become very complex.

Recently, we investigated the nanosized superconduct-
ing strips with one central weak link using the finite el-
ement method to solve the time-dependent Ginzburg–
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Landau (TDGL) equations. Our results indicated that
the energy barrier for vortices to enter a weak link is
smaller than that for vortices to enter superconduct-
ing layers [16]. In addition, we studied the static and
dynamic properties of the superconducting condensate
in a nanosized type-II superconducting strip with a
weakly superconducting narrow metallic region in the
presence of external magnetic and applied current [10].
We found that superconducting vortices penetrating the
weak-superconducting region are more mobile than the
ones in the strong superconducting regions. These stud-
ies were based on the two-dimensional limit, where the
superconducting condensate was assumed not to vary
along the direction of the magnetic field. In this paper,
we apply the finite-element method (FEM) to investigate
the three-dimensional (3D) cubic superconductor with a
central weak link based on the 3D TDGL theory, a proven
phenomenological approach for studies of vortex matter
in superconductors [17]. We introduce the weakly layered
structure in 3D mesoscopic samples, with the objective
to understand the penetration of magnetic field in such
samples, and the formation and rearrangement of vortex
states with respect to the superconducting layers and the
sample boundaries.

The paper is organized as follows. In Sect. 2, we show
the derived TDGL equations and explain the numerical
method and procedure we use in the calculations. In
Sect. 3, we analyze the results obtained for the 3D meso-
scopic superconductor with one central weak link. Our
results are finally summarized in Sect. 4.

2. Time-dependent Ginzburg–Landau model

We consider a mesoscopic superconducting cube of size
a = 10ξ with a single weak link of size d = ξ. Figure 1
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Fig. 1. Coordinate system and the cubic sample.

shows the schematic view of the cylinder under an arbi-
trarily tilted field, where the rotation angle θ is measured
with respect to the major (z) axis: H = H0 cos θ. The
plane of rotation is referred to as the y−z plane, and
we introduce the rotation for fields oriented parallel and
perpendicular to the major axis: Hz ≡ H(θ = 0◦) and
Hy ≡ H(θ = 90◦), respectively. The Ginzburg–Landau
theory describes the superconducting state through a
complex order parameter ψ for which |ψ|2 represents the
density of the Cooper pairs. In regions where |ψ|2 is
small, superconductivity is suppressed. At the center of
a vortex, |ψ|2 = 0, whereas the local magnetic field B is
maximum. The order parameter and the local magnetic
field can be determined by their TDGL equations, which
are expressed by(

∂

∂t
+ iΦ

)
ψ = −(i∇+ A)2ψ + (ζ − |ψ|2)ψ, (1)

σ

(
∂A

∂t
+∇Φ

)
= Js − κ2∇×∇×A, (2)

with boundary conditions
n · (− i∇−A)ψ|⊥ boundary = 0, (3)

where Φ is the electric potential, σ is related to the elec-
tric conductivity, n is the normal unit vector on the sur-
face, ζ is the anisotropy function [10]. The density of the
superconducting current Js is given by

Js =
i

2
(ψ∇ψ∗ − ψ∗∇ψ)− |ψ|2 A. (4)

We scale the length in units of ξ = ~√
2m|α0|

, the order

parameter ψ in units of ψ0 =
√
−α0

β (with α0 and β being
the GL coefficients [18]), the vector potential A in units
of A0 =

√
2κHcξ, the time t in unit of t0 = π~

8kBTc
, and the

local magnetic fieldB = ∇×A in units of Hc2 =
√

2κHc,
where Hc is the thermodynamic critical field, and κ = λ

ξ

is the GL parameter. Notice that the TDGL equations
are gauge invariant under the transformations ψ′ = ψ e iχ,
A′ = A + ∇χ, Φ′ = Φ − ∂χ

∂t . Therefore, we choose the
zero-scalar potential gauge, that is, Φ = 0 at all times
and positions. The free energy of the superconducting
state, measured in F0 =

H2
cV
8π units, is expressed as

F =
2

V

∫ [
− |ψ|2 + 1

2
|ψ|4 + |(i∇+ A)ψ|2

+κ2 (B −H)
2
]

dV. (5)

We solved these equations starting from zero applied

field, which was then increased adiabatically in small
steps, ∆H = 0.01. The dimensionless magnetization,
which is a direct measure of the expelled magnetic field
from the sample, is defined as M = 〈B〉−H

4π , where 〈B〉
is the magnetic induction averaged over the mesoscopic
superconductor volume V , i.e., 〈B〉 = 1

V

∫
B(r)dV . For

simplicity, we assume in this work a step-like behavior
of ζ across the system, so that it becomes a coefficient
equal to unity inside the superconducting layer, and less
than 1 inside the weak link. In our simulations, the weak
links are characterized by the anisotropy coefficient ζ in
the GL equation with ζ = 1 outside the weak link and
ζ = 0 in the weak link region. We chose the κ = 4 and
σ = 1. The initial conditions are |ψ|2 = 1 corresponding
to the Meissner state and zero magnetic field inside the
superconductor.

3. Results and discussions

We first calculate the full free-energy spectrum, magne-
tization and the corresponding vortex states as a function
of applied magnetic field for the sample with a central
weak link. In the first step, the magnetic field is kept par-
allel to the weak-link plane, and more specifically, parral-
lel to the y axis (Hy ≡ H(θ = 90◦)). Figure 2a shows the
free energy as a function of H for the sample. The lowest
energy curve corresponds to the thermodynamic stable

Fig. 2. Free-energy curve (a), magnetization (b) and
vorticity (c) for a mesoscopic superconducting cube of
size a = 10ξ with a single weak link of size d = ξ in an
external uniform magnetic field parallel to the y-axis.
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pattern, the Meissner phase with no vortices, but only up
to the first penetration field Hp = 0.24Hc2. Above this
field the entrance of two vortex tubes is favored, though it
is still possible to keep the system in the Meissner phase
but now as a metastable configuration. As the applied
field is further raised, four vortex tubes enter the sample.

Each jump in the magnetization curve corresponds to a
transition between different vortex states (Fig. 2b, c). We
find the multivortex states with vorticity L = 2, 4, 6, 8,
and 9, 10, . . . , 14 for 0.24Hc2 < H < 1.42Hc2. We find
that there are not L = 1, 3, 5, and 7 states existing in the
ground states for the cube.

Fig. 3. Vortex tubes for a mesoscopic superconducting cube of size a = 10ξ with a single weak link of size d = ξ in
an external uniform magnetic field parallel to the y-axis, at the field H

Hc2
= 0.34 (a), H

Hc2
= 0.50 (b), H

Hc2
= 0.70 (c),

H
Hc2

= 0.78 (d), H
Hc2

= 0.90 (e) and H
Hc2

= 0.92 (f). Parts (g)–(l) show the corresponding isosurface plots of vortex
tubes of (a)–(f). Blue to red means order parameter range from minimum to maximum.

Figure 3 shows absolute value of the order parame-
ter and corresponding isosurface plots of vortex tubes for
three selected vortex configurations at the field H

Hc2
=

0.34, H
Hc2

= 0.5, H
Hc2

= 0.7, H
Hc2

= 0.78 and H
Hc2

= 0.92.
Three selected vortex configurations display vorticity
L = 2, 4, 6, 8, 9, and 10 vortex states, respectively. These
three vortex configurations illustrate general features of
the vortex tubes inside the sample. A vortex tube must
reach the surface perpendicularly in order to avoid a su-
percurrent component pointing outwards the surface. As
can be seen in these figures, vortex tubes are located
preferably inside the weak link until the saturation num-
ber is reached, i.e., these are enough vortex tubes in the
weak link so that the increased vortex–vortex interaction
expels some of them into the fully superconducting part
of the sample. Note also that vortex tubes not only fa-
vorably reside in the weak link to minimize energy, but
they also enter the sample through the weak link owing
to the lower-energy barrier [14].

In what follows, the magnetization M(H) curves are
considered in a tilted magnetic field (H ≡ H(θ =
30◦)) (see Fig. 4). We deliberately separate the magnetic
response into the Cartesian components, and would de-
tect a linear combination of Mx, My and Mz, dependent
on its relative position to the sample surfaces. As the ap-
plied field increases, we observe the multi-vortex states
with vorticity L = 2, 4, 5, 6, 7, and 8 states. Figure 5
shows absolute value of the order parameter and cor-

Fig. 4. Magnetization M(H) curves in a tilted mag-
netic field (H ≡ H(θ = 30◦)). A linear combination of
Mx, My, and Mz, dependent on its relative position to
the sample surfaces, was detected.

responding isosurface plots of vortex tubes for selected
vortex states in a tilted magnetic field for θ = 30◦, at
the field H

Hc2
= 0.42 (a), H

Hc2
= 0.52 (b), H

Hc2
= 0.58 (c),

H
Hc2

= 0.64 (d), and H
Hc2

= 0.68 (e). Parts (f)–(j) show
the corresponding isosurface plots of vortex tubes of (a)–
(e). With a magnetic field not parallel to the x or y
axis, the vortices attempt to change their orientation ac-
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cordingly. The screening effects of the Meissner currents
are always maximal in the corners and vortices, as tubes
of magnetic flux must avoid those regions. Therefore,
the end of each vortex tube is bent. At the boundaries of
the sample, the supercurrent can only have the compo-

nent parallel to the surface. Therefore, the vortex end-
ings must be aligned perpendicular to the surface of the
sample. On the other hand, we can also observed the in-
tersection of vortex tubes inside (or near) the weak link
(see Fig. 5h–j).

Fig. 5. Absolute value of the order parameter and corresponding isosurface plots of vortex tubes for selected vortex
states in a tilted magnetic field for θ = 30◦, at the field H

Hc2
= 0.42 (a), H

Hc2
= 0.52 (b), H

Hc2
= 0.58(c), H

Hc2
= 0.64(d),

and H
Hc2

= 0.68 (e). Parts (f)–(j) show the corresponding isosurface plots of vortex tubes of (a)–(e). Blue to red means
order parameter range from minimum to maximum.

Fig. 6. Free-energy curve (a) and magnetization (b) for
a mesoscopic superconducting cube of size a = 10ξ with
a single weak link of size d = ξ in an external uniform
magnetic field parallel to the z-axis.

For the further investigation on the structure of vor-
tices, the magnetic field is kept perpendicular to the
weak-link plane, and more specifically, parrallel to the
z axis (Hz ≡ H(θ = 0◦)). Figure 6 shows the full free-
energy spectrum and magnetization as a function of ap-
plied magnetic field for the sample. Figure 6a shows
the free energy as a function of H. The lowest energy
curve corresponds to the thermodynamic stable pattern,

the Meissner phase with no vortices, but only up to the
first penetration field Hp = 0.32Hc2. Above this field
the entrances of two vortex tubes are favored (such as
H = 0.34Hc2). As the applied field is further raised, four
vortex tubes enter the sample. Each jump in the mag-
netization curve corresponds to a transition between dif-
ferent vortex states (Fig. 6b). We find the vortex states
with vorticity L = 2, 4, 6, 8, 10, 11, . . . , 14. To investigate
the effects of the magnetic field on the vortex states, the
selected vortex states are given in Fig. 7. One can see
that the vortices enter into the cube with increasing H
value. The strong confinement in the mesoscopic regime
prevents the formation of hexagonal structures and we
usually obtain ring symmetric structures. With increas-
ing magnetic field vortex enters the sample in the form
of a tube which was believed to be due to the presence
of a surface barrier [19]. Furthermore, we were also able
to observe the subtle changes of vortex tubes inside the
weak link.

4. Conclusions

In this paper we solved the time-dependent Ginzburg–
Landau equations for the three-dimensional mesoscopic
superconductor with one central weak link. We ob-
tained numerical expression in terms of the finite-element
method. Our results show that the final distribution of
vortices is determined by the competing interactions of
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vortices with the Meissner currents and the weak-link
boundaries. With increase of magnetic field the vortex
entered the sample in the form of tube which was believed

to be due to the presence of a surface barrier. Further-
more, we were also able to observe the subtle changes of
vortex tubes inside the weak link.

Fig. 7. Vortex tubes for a mesoscopic superconducting cube of size a = 10ξ with a single weak link of size d = ξ in
an external uniform magnetic field parallel to the z-axis, at the field H

Hc2
= 0.34 (a), H

Hc2
= 0.60 (b), H

Hc2
= 0.68 (c),

H
Hc2

= 0.72 (d) and H
Hc2

= 0.80 (e). Parts (f)–(j) show the corresponding isosurface plots of vortex tubes of (a)–(e).
Blue to red means order parameter range from minimum to maximum.
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