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Starting from the motion equation that corresponds to a RLCq circuit with source, we discuss the q-deformed
internal energy of the circuit by using a fluctuation dissipation theorem. Also, we study the q-deformed heat
capacity and q-deformed entropy.
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1. Introduction

An important class of generalized coherent states of
harmonic oscillator is provided by the q-deformed co-
herent states of q-deformed harmonic oscillator. That
is related to deformations of the canonical commutation
relation or, equivalently, to deformed boson operators.
These states play the important role in many branches
of physics as quantum optics. A series of articles [1–3]
have studied some interpretations and physical proper-
ties of independent and time-dependent q-deformed co-
herent states of the independent and time-dependent q-
deformed harmonic oscillator. References [4–13] treat
quantum effects and quantum fluctuation of a damped
harmonic oscillator, mesoscopic RLC circuit and radi-
ation reaction, by using fluctuation dissipation theo-
rem and correlation (or autocorrelation) function. Also,
Refs. [14–20] developed some properties of q-deformed
coherent state of q-deformed oscillator, and thus obtain
some significant results.

To study the temperature effect on the RLCq circuit,
we propose to study the q-deformed internal energy of
RLCq circuit, using the time-dependent correlation func-
tion and the fluctuation-dissipation theorem. After that,
we study the q-deformed heat capacity and q-deformed
entropy.

The paper is organized as follows. In Sect. 2 we
study the time dependent q-deformed harmonic oscilla-
tor. The q-deformed mechanical and electrical oscilla-
tions are studied in Sect. 3.

2. The time dependent q-deformed
harmonic oscillator

The algebraic symmetry of the time dependent q-
deformed harmonic oscillator, is defined in terms of q-
deformed annihilation and creation operators, aq(t) and
a+q (t), as
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aq(t)a
+
q (t)− qa+q (t)aq(t) = φ(N(t)), (1)

where φ(N(t)) = 1 for the “M-type” (Maths) q-deformed
bosons, and φ(N(t)) = q−N(t) for the “P-type” (Physics)
q-deformed bosons, knowing that N (t) = a+ (t) a (t).

In this paper, we consider the cases where the deforma-
tion parameter q is real. The basic q-deformed number
is then defined as the “asymmetric q-deformed number”
[n]q = 1−qn

1−q for the “M-type”, and as the “symmetric q-

deformed number” [n]q = q−n−qn
q−1−q for the “P-type”.

In both cases (M-type and P-type) we recover the nat-
ural numbers (and natural bosons) as for q → 1, we have
[n]q → n.

The Fock states, at time t, are spanned by the or-
thornormalized eigenstates {|n, t〉 , n = 0, 1, 2, 3, . . .}.

First, we define the vacuum state, at time t, as the
state which is annihilated by the annihilation operator,
at time t:

aq (t) |0, t〉 = 0. (2)
Then, we act on this state using the creation operator,
at time t:

|n, t〉 =
1√
[n]q!

(
a+q (t)

)n |0, t〉 , (3)

with the q-factorial defined by
[n]q! = [n]q [n− 1]q [n− 2]q . . . [1]q , [0]q! = 1. (4)

The actions of aq (t), a+q (t) and N(t) are given by

aq (t) |n, t〉 =
√

[n]q |n− 1, t〉 ,

a+q (t) |n, t〉 =
√

[n+ 1]q |n+ 1, t〉 ,

N (t) |n, t〉 = n |n, t〉 . (5)
We also have the following algebraic equalities:
aq (t) a+q (t) = [N (t) + 1]q ,

a+q (t) aq (t) = [N (t)]q , (6)
To analyze the dynamics of the time dependent q-

deformed harmonic oscillator, we use the time indepen-
dent q-deformed position (Xq) and the momentum (Pq)
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operators related to the time dependent q-deformed bo-
son operators aq (t) and a+q (t) as follows:

aq (t) = 1√
2

√
m(t)ω(t)

~ Xq + i
√

1
~m(t)ω(t)Pq, (7)

a+q (t) = 1√
2

(√
m(t)ω(t)

~ Xq − i
√

1
~m(t)ω(t)Pq

)
, (8)

where ~ = h
2π , h is the Planck constant, m (t) = me2βt

(m is the initial mass of the oscillator, β > 0 is a damping

constant) and ω (t) = ω =
(
k
m

) 1
2 (k is an elastic coeffi-

cient) are, respectively, the time dependent mass of the
oscillating system and the time dependent frequency.

Then Eqs. (7), (8) become
aq (t) ≡ aq (β, t) =

1√
2

(√
mω

~
eβtXq + i

√
1

~mω
e−βtPq

)
, (9)

a+q (t) ≡ a+q (β, t) =

1√
2

(√
mω

~
eβtXq − i

√
1

~mω
e−βtPq

)
. (10)

The dynamics of the time dependent q-deformed har-
monic oscillator is governed by the (q-deformed) Hamil-
tonian Hq (t), that is constructed in analogy with the
Hamiltonian of the harmonic oscillator

Hq (t) =
P 2
q

2m (t)
+

1

2
m (t)ω2(t)X2

q . (11)

Using the definitions of m (t) and ω(t), one gets

Hq (t) =
e−2βtP 2

q

2m
+

1

2
mω2 e2βtX2

q . (12)

The time dependent q-deformed coherent state
|z, β, t〉q is governed by the spectrum Enq of the time
independent q-deformed harmonic oscillator
|z, β, t〉q =

Nq
(
|z|2
)∑∞

n=0
zn e

−iEnqt

~√
[n]q !

|n, t〉 =

Nq
(
|z|2
) ∞∑
n=0

zn e
−iEnqt

~
(
a+q (β, t)

)n
[n]q!

|0, t〉 , (13)

where z = |z| e iϕ and the normalization constant
Nq
(
|z|2
)
is given by the relation

Nq
(
|z|2
)

=
(∑∞

n=0
|z|2n
[n]q !

)− 1
2

=
(
e
|z|2
q

)− 1
2

, (14)

and the eigenvalues Enq of the time independent q-
deformed harmonic oscillator are given by

Enq =
~ω
2

(
[n+ 1]q + [n]q

)
. (15)

By construction, the time dependent q-deformed co-
herent states |z, β, t〉q are right eigenstates of the lower-
ing operator aq (t):

aq (t) |z, β, t〉q = z |z, β, t〉q . (16)

3. q-deformed mechanical
and electrical oscillations

3.1. q-deformed mechanical oscillations

The mean value of the time independent q-deformed
position operator on the time dependent q-deformed har-
monic oscillator states is:

xq (t) =q 〈z, β, t|Xq |z, β, t〉q =

2

√
~

2mω
e−βt

(
e|z|

2

q

)−1 ∞∑
n=0

|z|2n+1

[n]q!

× cos

(
ωt

2
([n+ 2]q − [n]q)− ϕ

)
. (17)

This position function can be seen as a particular solu-
tion of the following differential equation defining a q-
deformed damped and forced time-dependent harmonic
oscillator:

d2xq(t)

dt2
+ 2β

dxq(t)

dt
+ ω2

qxq(t) = gq (t) , (18)

where

ω2
q = ω2 (1 + q)

2

4
(19)

is the frequency (the resonance frequency) of the oscilla-
tions, and

gq (t) = 2

√
~

2mω
e−βt

(
e|z|

2

q

)−1 ∞∑
n=0

|z|2n+1

[n]q!(
ω2
q −

ω2

4
([n+ 2]q − [n]q)

2 − β2

)
× cos

(
ωt

2
([n+ 2]q − [n]q)− ϕ

)
(20)

is the external force of angular frequency ω
2 ([n+ 2]q −

[n]q).
This allows to interpret the q-deformed harmonic os-

cillators defined in (1) as being the quantized versions of
a classical damped and forced oscillator described by the
classical differential equation (18) with the proper choice
of the box function [ ]q.

On the other hand, and as expected, in the case q → 1
the differential equation (18) becomes the usual differen-
tial equation of a damped and forced oscillator

d2x(t)

dt2
+ 2β

dx(t)

dt
+ ω2x(t) = g (t) .

3.2. q-deformed electrical oscillations

Using the analogy between q-deformed mechanical and
electrical phenomena (xq (t) → Qq (t), m → L, k → 1

C ,
2β → R

L ), Eq. (17) becomes

Qq (t) = 2

√
~

2Lω
e
−Rt
2L

(
e|z|

2

q

)−1 ∞∑
n=0

|z|2n+1

[n]q!

cos

(
ωt

2
([n+ 2]q − [n]q)− ϕ

)
, (21)

where Qq (t) is the electric charge in the circuit, L, R,
and C stand for inductance, resistance, and capacity, re-
spectively. As in (18), this is a particular solution of a
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damped and forced differential equation for an RLCq cir-
cuit with a power source

d2Qq(t)

dt2
+
R

L

dQq(t)

dt
+ω2

qQq(t)=εq (t) =
1

L
ε̂q (t) , (22)

where

εq (t) = 2

√
~

2Lω
e
−Rt
2L

(
e|z|

2

q

)−1 ∞∑
n=0

|z|2n+1

[n]q!(
ω2
q −

ω2

4
([n+ 2]q − [n]q)

2 −
(
R

2L

)2
)

× cos

(
ωt

2
([n+ 2]q − [n]q)− ϕ

)
(23)

is the electromotive force (source of the RLCq electric
circuit).

It is worth noting that because the natural frequency
got modified and becomes q-dependent (as in (19)), the
capacitance is q-dependent, too

ω2
q =

1

LCq
= ω2 (1 + q)

2

4
, (24)

Cq = C
4

(1 + q)
2 . (25)

For q → 1 we have ωq → ω and Cq → C; so one can state
that the effect of “q-deforming” the harmonic oscillator
(1) is to modify (deform) the resonance frequency (24),
the capacitance (25) and the power source (23).

From (22) and (21), we see that the variation of the
electric charges is accompanied by the following four sorts
of energy changes [2, 4, 5]:
(i) The capacity energy,

ECq (t) =
(Qq (t))

2

2Cq
. (26)

(ii) The inductance energy,

ELq (t) =
1

2
L

(
dQq (t)

dt

)2

. (27)

(iii) The loss of energy caused by the resistance,

ERq (t) =

∫ t

0

R

(
dQq (t′)

dt′

)2

dt′. (28)

(iv) The energy supplied by the source Egq (t),

Egq (t) =

∫ t

0

εq (t′)
dQq (t′)

dt′
dt′. (29)

Therefore, the total energy change of the system can
be written as

ETq (t) = ECq (t) + ELq (t) + ERq (t) = Egq (t) . (30)
Accordingly, the variation of the energy can be obtained
through the equation

∆Eq (t) =
(Qq (t))

2

2Cq
+RQq (t)

dQq (t)

dt

+
L

2

(
dQq (t)

dt

)2

− εq (t)Qq (t) . (31)

The thermal expectation value of the energy change in
the circuit is

〈∆Eq (t)〉 =
1

2Cq

〈
(Qq (t))

2
〉

+R

〈
Qq (t)

dQq (t)

dt

〉
+
L

2

〈(
dQq (t)

dt

)2
〉
− εq (t) 〈Qq (t)〉 . (32)

To calculate 〈∆Eq (t)〉, we introduce a time-dependent
correlation function ψq (t− t′):

ψq (t− t′) =
1

2
〈Qq (t)Qq (t′) +Qq (t′)Qq (t)〉 . (33)

From Eq. (33), we know that〈
(Qq (t))

2
〉

= ψq (t− t′) |t=t′ , (34)〈(
dQq (t)

dt

)2
〉

=
∂2ψq (t− t′)

∂t2
|t=t′ , (35)〈

Qq (t)
dQq (t)

dt

〉
=
∂ψq (t− t′)

∂t
|t=t′ . (36)

We assume that the RLCq circuit is in equilibrium
when the power becomes zero, so
〈Qq (t)〉 = 0. (37)

The fluctuation-dissipation theorem gives [4, 7]:

ψq (t− t′) =
~
π

∫ +∞

0

dΩq coth

(
~Ωq

2kBT

)
× Imα(Ωq)e iΩq(t−t′), (38)

where kB is the Boltzmann constant, T is the absolute
temperature, and

Ω2
q = ω2

q −
R2

4L2
= ω2

q − β2, (39)

as definition, we add that α(Ωq) is called the generalized
susceptibility in the RLCq circuit,

α(Ωq) =
1

−LΩ2
q + 1

Cq
+ iRΩq

. (40)

Substituting Eq. (38) into Eqs. (34)–(37), we obtain the
q-deformed internal energy Uq(T ):

Uq = 〈∆Eq(t)〉 =
~

2π

∫ +∞

0

dΩq(−LΩ2
q +

1

Cq
+ 2iRΩq)

× coth

(
~Ωq

2kBT

)
Imα(Ωq). (41)

Uq as a function of a absolute temperature T is sketched
in Fig. 1.

q=0.9

q=0.4

q=0.1

0 1 2 3 4
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U
q

Fig. 1. Uq as a function of T with ~ = ω = L = C =
kB = 1, β = 0.5 and z = 1 for M-type.
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In Fig. 1, we display the average energy of a RLCq cir-
cuit in thermal equilibrium, as a function of temperature
for q = 0.1, q = 0.4 and q = 0.9. The bisectrix (thick
line) is merely a reference line, to clarify the asymptotic
behavior, which is important to understand RLCq cir-
cuit, because many things that we see around us can be
modeled as RLCq circuit or collections of RLCq circuit.

We can learn a lot from this figure. We start by con-
sidering the limiting cases. At high temperatures, the
q-deformed internal energy of the RLCq circuit is pro-
portional to T , which is the classical result, as expected.
Meanwhile, at low temperatures, the q-deformed internal
energy is asymptotically U0q at T = 0, which is the cel-
ebrated zero-point energy associated with quantum fluc-
tuations.

In addition, this result indicates that the movement
of the charge in the circuit at high temperature is clas-
sical since the quantum fluctuation is dominated by the
classical thermodynamic fluctuation. Therefore at low
temperature, the movement of the charge in the circuit
is purely a quantum effect and the origin of the quantum
phenomenon can be attributed to the fluctuations of zero
point vibrations of the charge.

The increase of the deformation parameter q and close
to the limit value q = 1 (undeformed case) favors the
decrease of the q-deformed internal energy (Fig. 1).

We also calculate the q-deformed heat capacity of
RLCq circuit as

CV q =

(
∂Uq
∂T

)
V

. (42)

q=0.4

q=0.1

q=0.9

0 1 2 3 4

0.0
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1.2

T

C
V

q

Fig. 2. CV q as a function of T with ~ = ω = L = C =
kB = 1, β = 0.5 and z = 1 for M-type.

In the q-deformed heat capacity CV q as a function of
the temperature T for the RLCq circuit (Fig. 2), we no-
tice that as the temperature increases, the q-deformed
heart capacity approaches to a constant value. It reduces
to the classical rule at high temperatures.

Similarly, the q-deformed entropy is calculated as

Sq =

∫ T

0

dUq
T

. (43)

In the q-deformed entropy Sq as a function of the tem-
perature T for the RLCq ciruit (Fig. 3), we notice that
when T → 0, we obtain Sq → 0 obeying the third law
of thermodynamics. Also, when T increases, Sq also in-

q=0.4

q=0.1

q=0.9

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T

S
q

Fig. 3. Sq as a function of T with ~ = ω = L = C =
kB = 1, β = 0.5 and z = 1 for M-type.

creases in agreement with the second law of thermody-
namics.

The integrals Uq, CV q and Sq cannot be evaluated ana-
lytically. An adequate numerical procedure based on the
IMT-Legendre quadrature in conjunction with a change
of variables of the integration interval is detailed in the
appendix [21].

4. Conclusion

In this paper, we have studied the q-deformed internal
energy of RLCq circuit, the q-deformed heat capacity
and q-deformed entropy of RLCq circuit. In addition,
we used the time-dependent correlation function and the
fluctuation-dissipation theorem for RLCq circuit. Conse-
quently, we have found at high temperature, the energy
Uq is proportional to T , which agrees with the classical
result. Moreover, at low temperature, the energy Uq is
asymptotically just U0q at T = 0, which is the celebrated
zero-point energy associated with quantum fluctuations.
The result heat capacity approaches to the classical re-
sult for high temperatures and goes to zero for vanishing
temperature. The entropies of both systems also obey to
the second law of thermodynamics as well as the third
law of thermodynamics.

The increasing behaviour of the deformation param-
eter q and close to the limit value q = 1 (undeformed
case) favors the decrease of the q-deformed internal en-
ergy (Fig. 1), the q-deformed heat capacity (Fig. 2) and
the q-deformed entropy (Fig. 3).

Appendix: Numerical evaluation of integrals

Numerical evaluation procedure of the integral Uq
is described here. The susbstitution Ωq = exp

(
1− 1

t

)
changes the interval 0 ≤ Ωq < ∞ into the interval
0 ≤ t ≤ 1 so that∫ +∞

0

F (Ωq)dΩq =∫ 1

0

F
(
exp

(
1− 1

t

)) exp(1− 1
t )

t2
dt,

where F (Ωq) = ~
2π (−LΩ2

q + 1
Cq

+ 2iRΩq) Im(α(Ωq)),
α(Ωq) = 1

−LΩ2
q+

1
Cq

+iRΩq
. Then, we apply the IMT [21]

transformation which is based upon the idea of trans-
forming the independent variable in such a way that all
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the derivatives of the new integrand vanish at both end
points of the integration interval. This has the effect of
removing the singularity at the end point t = 0. Let

φ0(t) = exp

(
−1

t
− 1

1− t

)
,

ψ0(x) =
1

K

∫ x

0

φ0(t)dt,

K =

∫ 1

0

φ0(t)dt ' 0.00702985840.

The function ψ0(x) is monotonously increasing, per-
forming a one-one transformation of [0, 1] onto itself.
Consequently,∫ +∞

0

F (Ωq)dΩq =

1

K

∫ 1

0

F
(

exp
(

1− 1
ψ0(t)

)) exp(1− 1
ψ0(t)

)

ψ2
0(t)

φ0(t)dt.

Applying the Gauss–Legendre quadrature to this inte-
gral, we obtain the following expression:∫ +∞

0

F (Ωq)dΩq '
1

2K

n−1∑
i=1

F

(
exp

(
1− 1

ψ0(
xi+1

2 )

))

×wi
exp

(
1− 1

ψ0(
xi+1

2 )

)
ψ2
0(xi+1

2 )
φ0(

xi + 1

2
),

where wi = 2
(1−x2

i )[P
′
n(xi)]2

, and xi are n zeros of the
n-th-degree Legendre polynomial Pn(x).

To calculate the isochoric thermal capacity CV q, we
proceeded differently. As suggested by Squire [22], we
split the range [0,+∞) into two intervals [0, β0] and
[β0,+∞) and set t = Ωq/β0 in the first interval, t =
β0/Ωq in the second. This gives∫ +∞

0

G(Ωq)dΩq = β0

∫ 1

0

[
G(β0t) +

1

t2
G(β0/t)

]
dt,

where G =
Ωq~2 Im(α(Ωq))

(
1

Cq
−LΩ2

q+2iRΩq

)
csch2

(
Ωq~

2kBT

)
4πkBT 2 ,

for CV q. The β0 is chosen equal to the value 800. The
integral over the interval [0, 1] is evaluated efficiently by
the IMT-Legendre rule∫ +∞

0

G(Ωq)dΩq =
β0
2K

n∑
i=1

wiφ0

(
xi + 1

2

)
×

[
G

(
β0ψ0

(
xi + 1

2

))
+
G
(
β0/ψ0

(
xi+1
2

))
ψ2
0

(
xi+1
2

) ]
.

Finally, the application of the IMT-Legendre quadrature
allows us to obtain the numerical value of the q-deformed
entropy Sq as follows:

Sq =
1

2K

n∑
i=1

wiφ0

(
xi + 1

2

)
CV q(Tψ0

(
xi+1
2

)
)

ψ0

(
xi+1
2

) .
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