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In the present paper, there are studied main theoretical views of two-dimensional (2D) linear uniform cellular
automata with reflective boundary condition over the ternary field, i.e. three states spin case or Z3. We set up
a relation between reversibility of cellular automata and characterization of 2D uniform linear cellular automata
with this special boundary conditions by using of the matrix theory. In near future, these cellular automata can
be found in many different real life applications, e.g. computability theory, theoretical biology, image processing
area, textile design, video processing, etc.
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1. Introduction

A cellular automaton (cellular automata (CA) for plu-
ral) is a discrete dynamical model. CA operate infinite
space and time and their behaviors are entirely charac-
terized by defined special some local given rules. Up
to now researchers investigated and explored many as-
pects of CA with special interest in the study of differ-
ent kinds of CA. These studies are mainly some special
analytical ideas into the behavior of the iterative pro-
cess. CA idea are firstly investigated by Von Neumann
and Burks [1] around 1950’s, were in systematic way in-
vestigated by Hedlund considering its just mathematics
theoretical view. Von Neumann was interested in the as-
sociation between biology and the new study of CA. One-
dimensional (1D) CA are studied in very extended math-
ematical ways and demonstrated for many various appli-
cations. However, not so much interest is presented to 2D
uniform and hybrid CA. Von Neumann presented that a
cellular automaton can be more universal considering its
many elegant properties. Due to its structured complex-
ness, Von Neumann rules never proceeded in computer
program language codes in that time. Around the eight-
ies, Wolfram [2] has started to study some prominent
properties of a simple 1D uniform CA rules and inves-
tigated that even different simple rules are capable of
showing very interesting complex and different chaotic
behaviors. Uniform linear CA have been admitted strik-
ing interest in the past decades [3–11]. The papers [4, 8–
12] investigate the mathematical analytic behavior of the
hybrid and uniform 2D CA with states values in ternary
fields Z3. In this paper, we concentrate a special fam-
ily of 2D finite linear CA with reflective condition over
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the field Z3. Here, we set up a specific relation between
reversibility of uniform cellular automata and character-
ization of 2D CA with reflective boundary condition. We
study the determination of the characterization problem
of this special CA by means of the matrix algebra theory.
Using the linear rule matrices presented in the work, the
results give further to the algebraic consequences of these
2D CA and relates some real-life applications found by
the authors in the literature (i.e. [8, 9–19]).

2. Reversibility of linear CA (rule 2460 RB)

We work on CA established by uniform linear rule over
the three states field Z3 and deal with the general case of
the CA reversibility problem. The determining all 1D–2D
uniform CA is reversible or not is generally a challenging
problem. Firstly, there are found the rule matrices Trules

corresponding to finite 2D linear CA, after then there
is characterized the reversibility problem of this special
reflexive 2D CA.

2.1. Rule matrices of linear CA

Considering the neighbourhood of the information
cells, there are following known studied boundary ap-
proaches in the literature.

• Null boundary (NB): the boundary cells are zero
spin values, or fixed 0-state.

• Periodic boundary (PB): the boundary cells are
contiguous to each border way.

• Reflective boundary (RB): the boundary cells are
reflection to border way.

An important note is that there are also different types of
special boundary conditions to study for future studies,
i.e. adiabatic boundary, etc. (see details [10, 15–19]).
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Transition rule matrices for reflexive case: Rule
matrix under reflective boundary for rule 2460 RB:

T2460RB =



aI +R(b, d) cI 0 · · · 0 0

aI R(b, d) cI · · · 0 0

0 aI R(b, d) · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · aI cI +R(b, d)


where each partioned matrix are

R(b, d) =

 d b 0

d 0 b

0 d b


Lemma: For uniform type CA over Z3, the representa-

tion of the fundamental linear CA rule matrices (30 = 1;
31 = 3; 32 = 9; 33 = 27; 34 = 81; 35 = 243; 36 = 729;
37 = 2187 and 38 = 6561) with reflective boundary neigh-
bourhood over Z3 is found by considering the fixed block
matrix T2460RB defined above.

2.2. Reversibility idea of 2D uniform linear CA

If the transition rule matrix Trules is a non-singular
matrix, then we have X(t) = (Trules)

−1X(t+1)(mod3).
Here a main problem of finding whether the rule matrix
Trules is invertible (or nonsingular) matrix or not for any
cases. If the transition matrices Trules have full rank prop-
erties, then it is said to be a invertible CA, hence the 2D
finite hybrid or uniform CA is a reversible one, otherwise
it is called a irreversible CA. The analysis on reversible
or irreversible cases of the transition rules found in the
next subsection is given as a Theorem.

3. Rule block matrices
of CA with reflective boundary

Let Ti indicate the i-th row entry and Ti [j] indicate
the j-th position element of the i-th row of rule matrix
Trules, repectively. We set up a specific relation between
reversibility of uniform CA and characterization of 2D
CA with reflective boundary condition by means of the
matrix algebra.
Main theorem: Let the matrix
(Trules)mn×mn =



aI +R(b, d) cI 0 · · · 0 0

aI R(b, d) cI · · · 0 0

0 aI R(b, d) · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · aI cI +R(b, d)



with m,n ≥ 3 representing the linear 2D CA over the
field Z3 under reflective boundary condition. Let

T 1
1 = T1, T k+1

1 = −T k
1 [k]

(
T 1
k+1 [k]

)−1
T 1
k+1 + T k

1 .

Define the following 1 × 1 block matrix consisting of
blocks of square matrices of order nK = (Tm

1 [m]). Hence
we obtain that the rank equalites of the transtition ma-
trix is presented by

rank(Trules) = (m− 1)n+ rank(K).

Proof: Let use induction on m and utilize the idea sim-
ilarly used in the calculation of the rank of Trules, then
we will find the linear algebraic relation of the rank of
Trules for any cases.

T2460RB =



aI +R(b, d) cI 0 · · · 0 0

aI R(b, d) cI · · · 0 0

0 aI R(b, d) · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · aI cI +R(b, d)


Firstly, one can see above that the sub-matrix compris-
ing of all rows except the first is the upper triangu-
lar shape and sub-matrix is of a full rank matrix that
the sub-matrix rank is (m − 1)n for a, b, c, d, e ∈ Z∗

3 =
{1, 2}. Now, if one can multiply the second row T2 by
−T 1

1 [1] .
(
T 1
2 [1]

)−1
T 1
2 and adding that product to T 1

1 ,
so first entry elements of the first new-one row T 2

1 be-
comes zero. Hence, we change the the first row by
T 2
1 = −T 1

1 [1] .
(
T 1
2 [1]

)−1
T 1
2 + T 1

1 . Now, we want to
T 2
1 [2] s zero. In that case, we apply the same thing for

T 2
1 . So we have T 3

1 = −T 2
1 [2] .

(
T 1
3 [2]

)−1
T 1
3 + T 2

1 . Thus
the second entry-elements of the new first-row becomes
zero. Repeatedly, we see that subsequently m − 1 steps
the only non-zero entires of Tm−1

1 is Tm
1 [m].

T2460RB =



0 0 0 · · · 0 Tm
1 [m]

aI R(b, d) cI · · · 0 0

0 aI R(b, d) · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · aI cI +R(b, d)


=

(
0 K

L M

)

The left lower block of L has full rank (m− 1).n. Hence
we can obtain that the rank equalites of the transtition
matrix is presented by

rank(Trules)=rank(L)+rank(K)=(m− 1)n+rank(K).

3.1. Image problems and reflexive rule 2460 CA
Self-copied pattern producing is one of the most in-

teresting topic and research area in nonlinear science.
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Fig. 1. Image applications of null (NB) and reflective
(RB) boundary CA rule 2460 NB-RB for 2D.

Fig. 2. Image applications of null (NB) and reflective
(RB) boundary CA rule 2460 NB-RB for 1D.

Pattern generation is the process of transforming copies
of the motif about the array (1D), plane (2D) or space
(3D) in order to create the whole repeating pattern with
no overlaps and blank (Figs. 1, 2) [5, 6, 9–13]. These
patterns have some mathematical properties which make
generating algorithm possible. CA is a good candidate
algorithmic approach used for pattern generation. We
obtain the following pattern generation of t = 16 itera-
tion of rule 2460 NB-RB (Figs. 1, 2). Self-copied patterns
given in Figs. 1, 2 can be generated only when number
of repetition is 16 iterations. Also, behaviors for differ-
ent boundaries produce different shapes when t = 16.
These interesting results should be investigated as image
problem for CA in the next studies.

4. Conclusions

We study the theoretical aspects of 2D linear CA with
reflective boundary case over the ternary field Z3 or three
spin states case. It is introduced a main theorem for
determining the reversibility of these CA for a general
case of linear transformation. Also after constructing
the transition matrix representation of 2D linear CA, we
have found image applications (see Figs. 1, 2) for the 2D
linear CA. New other results is another goal of the fu-
ture study. These CA results can be applied successfully
in especially image processing area [9–13] and the other
science branches in near future [14–21].
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