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New equations for heat capacities, entropies and enthalpies were applied to the experimental constant volume
and constant pressure heat capacity data of tungsten. The heat capacity CP max was predicted to be 24.96 J/molK
at 400 K. The temperatures ΘV and ΘP were found to be 78.5 K. The relationships between dimension and ΘV

and Debye temperature were given. Tungsten shows the dimensionality crossover from 3 to 2 at about 80 K.
Temperature dependences of Debye temperature, ΘV and ΘP and non-monotonic behavior were discussed. The
heat capacity and entropy values predicted by the proposed models were compared with the values predicted by
the Debye models. The results have shown that the proposed models fit the data better than the Debye models.
The enthalpy values predicted by the proposed models were compared with the values predicted by the polynomial
model and good fitting was obtained. The proposed models have shown that the constant pressure heat capacity
data can be used to calculate enthalpies, entropies and heat capacities of tungsten.
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1. Introduction

Einstein introduced the first quantum statistical model
with single oscillator for the temperature dependences of
heat capacities of solids [1]. The values obtained from
this model lie below the experimental heat capacities at
low temperatures [2–4].

Nernst and Lindemann’s two oscillator model has im-
proved the fitting of heat capacity data in compari-
son with Einstein’s model. However, this model could
not well describe the heat capacities in the region T <
100 K [5].

Einstein and Nernst-Lindemann’s models have used
the discrete oscillation frequencies, and the resulting the-
oretical curves obtained by these models show a plateau
behavior in the T → 0 K limit. In the model given by
Debye, atomic system is considered to be a three dimen-
sional, elastic and isotropic continuum [6]. The heat ca-
pacity equation is given by [2–4, 6, 7]:

CV = 9R

(
T

ΘD(T )

)3
xD∫
0

x4 ex

(ex − 1)
2 dx, (1)

where ΘD is Debye temperature, x = ΘD(T )/T and R is
gas constant.

The entropy equation in the Debye model is given
by [2, 3, 6]:

S = 3R

 4

x3D

xD∫
0

x3dx

ex − 1
− ln

(
1− e−xD

) . (2)
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The analytical solutions of integrals in Eq. (1) and Eq. (2)
are not known. Therefore, at the intermediate temper-
atures, the values of heat capacities and entropies must
be obtained by numerical integration.

At very low temperatures, where T � ΘD, the follow-
ing equation is obtained from Eq. (1):

CV
∼=

12π4R

5

(
T

ΘD (T )

)3

. (3)

Equation (3) is assumed to be valid from 0 K up to lat-
tice temperatures of order θD(0)/50, where ΘD(0) is the
Debye temperature at T → 0 K. ΘD depends on tempera-
ture. Therefore, it is often impossible to provide good fit-
tings of Eq. (1) to the given heat capacity data sets with
a single Debye temperature over the entire temperature
range [3, 8]. These non-Debye behaviors have been given
in terms of CV /T

3 functions [9–11]. These curves show a
non-monotonic behavior in the low temperature region,
which cannot be explained with the Debye’s model.

The departure from Eq. (3) in the temperature in-
terval θD(0)/50 ≤ T ≤ θD(0)/10 was assumed to be
due to the deviation of frequency distribution. For this
region, the equation based on Taylor series expansion
has been proposed [3, 8, 12]. Different models based
on Thirring and exponential series expansions have also
been given for the intermediate to high temperature
regions, respectively [5]. However, these models are
more complex and seven or eight empirical parameters
should be determined.

The heat capacity of a free electron gas in three di-
mensions for T � TF has been given in [7]:

Cel = 3R
π2

6

T

TF
, (4)

where TF is the Fermi temperature. For high tempera-
tures, the following equation has been given in [3]:
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Cel =
3

2
Rz

[
1− 1

6 (2π)
3/2

(
TF
T

)3/2

. . .

]
, (5)

where z is the number of free electrons per atom. For
intermediate values of (T/TF), Cel must be computed
numerically.

At low temperatures, the heat capacity of solids may
be written as:

CV = γT +AT 3, (6)
where γ and A are characteristic constants of the solid [7].
A plot of CV /T versus T 2 should be a straight line with
slope A and intercept γ and allows the determination of
Debye temperature ΘD(0) through A = 12π4Rs/5Θ3

D(0).
In this study, the heat capacity, enthalpy and en-

tropy equations proposed in [13] will be applied to
the constant volume and constant pressure heat capac-
ity data of tungsten. The temperature and dimen-
sion dependence of Debye temperature and the devia-
tion from monotonicity will be explained. The results
obtained from the proposed Debye and polynomial equa-
tions will be compared.

2. Heat capacity, entropy
and enthalpy equations

The heat capacity equation at constant volume,

CV = 3R
Tn

Tn +Θn
V (T )

, (7)

the heat capacity equation at constant pressure,

CP = CPmax
Tn

Tn +Θn
p (T )

, (8)

and the electronic heat capacity equation

Cel =
3

2
R

Tn

Tn + Tn
E (T )

, (9)

were given in Ref. 13.
If n = 3, the following equation can be written at low

temperature:

CV = 3R

(
T

ΘV (T )

)3

. (10)

From Eq. (3) and Eq. (10), the following equation is ob-
tained:

ΘV (T ) = ΘD(T )

(
5

4π4

)1/3

. (11)

The electronic molar entropy equation,

Sel,n =
3

2n
R ln

((
T

TE(T )

)n

+ 1

)
, (12)

the lattice molar entropy equation at constant volume,

SV,n =
3

n
R ln

((
T

ΘV (T )

)n

+ 1

)
, (13)

and the lattice molar entropy equation at constant pres-
sure

SP,n =
CPmax

n
ln

((
T

ΘP (T )

)n

+ 1

)
, (14)

were given in Ref. 13.

The lattice molar enthalpy equations at constant pres-
sure for n = 1, n = 2 and n = 3,

Hp,n=1 = CPmax

(
T +ΘP ln

(
ΘP

T +ΘP

))
, (15)

Hp,n=2 = CPmax

(
T −ΘP cot

(
T

ΘP

))
, (16)

HP,n=3 = CPmax

(
− π

6
√
3
ΘP + T − ΘP

3
ln (ΘP + T )

+
ΘP

6
ln
(
Θ2

P −ΘPT + T 2
)
− ΘP√

3
cot

(
2T −ΘP√

3ΘP

))
,

(17)
the lattice molar enthalpy equations at constant volume
for n = 1, n = 2 and n = 3, and

HV,n=1 = 3R

(
T +ΘV ln

(
ΘV

T +ΘV

))
, (18)

HV,n=2 = 3R

(
T −ΘV cot

(
T

ΘV

))
, (19)

HV,n=3 = 3R

(
− π

6
√
3
ΘV + T − ΘV

3
ln (ΘV + T )

+
ΘV

6
ln
(
Θ2

V −ΘV T + T 2
)
− ΘV√

3
cot

(
2T −ΘV√

3ΘV

))
,

(20)
the electronic molar enthalpy equations for n = 1, n = 2
and n = 3

Hel,n=1 =
3

2
R

(
T + TE ln

(
TE

T + TE

))
, (21)

Hel,n=2 =
3

2
R

(
T − TE cot

(
T

TE

))
, (22)

Hel,n=3 =
3

2
R

(
− π

6
√
3
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3
ln (TE + T )

+
TE

6
ln
(
T 2

E − TET + T 2
)
− TE√

3
cot

(
2T − TE√

3TE

))
,

(23)
were given in Ref. 13.

3. Results and discussion

The heat capacity data of tungsten at constant vol-
ume and constant pressure for the temperature range
from 1 K to 400 K were obtained from Ref. 14 and are
shown in Fig. 1. The value of CPmax was predicted to be
24.96 J/molK at 400 K from Eq. (8). The values of ΘV

and ΘP were found to be 78.5 K. The value of ΘD(0) was
found to be 383 K from CV versus T 2 plot. The heat ca-
pacity values calculated using ΘD = 383 K in Eq. (1) and
the heat capacity values calculated by using ΘV = 78.5 K
and n = 3 in Eq. (7) are shown in Fig. 1.

The ΘD(T ) values were calculated from the numerical
solution of Eq. (1). Temperature dependence of ΘD(T )
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Fig. 1. Temperature dependence of heat capacity of
tungsten.

Fig. 2. Temperature dependence of ΘD(T ) and ΘV (T )
of tungsten.

for tungsten is shown in Fig. 2. The value of ΘD(T ) in-
creases monotonously from 123 K to the maximum 364 K
with increasing temperature from 1 K to 16 K and then
decreases towards 165 K at about 350 K.

The following equation is obtained from Eqs. (7)
and (11):

n =
log
(

3R
CV
− 1
)

log
(
ΘD(T ) (5/4π4)

1/3
/T
) . (24)

The temperature and ΘD(T ) dependence of n for tung-
sten is shown in Fig. 3. The value of n is about 3 from 1 K
to 18 K. It then decreases and passes through a minimum
of 2.92 at about 40 K and then increases to 3 at 50 K.
n exhibits a crossover from 3 to 2 at about 80 K. After
80 K, n takes the value of about 2. Figure 2 and Eq. (24)
show that ΘD(T ) depends on temperature and n.

The following equation is obtained from Eq. (7):

ΘV (T ) = T

(
3R

CV
− 1

)1/n

. (25)

The ΘV (T ) values were calculated by using n = 3 at all
temperatures, and by using n = 3 from 1 K to 80 K and

Fig. 3. Temperature dependence of n of tungsten.

Fig. 4. CV /T 3 versus T for tungsten.

by using n = 2 from 80 K to 400 K in Eq. (25). Figu-
re 2 shows that the temperature dependence of ΘV (T ),
obtained by using n = 3 from 1 K to 80 K and by using
n = 2 from 80 K to 400 K, is similar to ΘD(T ). How-
ever, the ΘV (T ) values obtained by using n = 3 at all
temperatures are different.

Figure 4 shows the non-monotonic behavior of the
CV /T

3 function at low temperatures. n was taken to
be 3 in this function. It is seen from Eqs. (3) and (10)
that the CV /T

3 is inversely proportional to Θ3
D(T ) and

Θ3
V (T ). Therefore, the CV /T

3 function shows the inverse
behavior to Θ3

D(T ) and Θ3
V (T ).

The root mean square error of prediction (RMSEP) is
obtained from the following equation:

RMSEP(C) =

√√√√ 1

m

m∑
i=1

(CV pred − CV exp)
2
, (26)

where Cexp is the experimental heat capacity at con-
stant volume and constant pressure, Cpred is the pre-
dicted heat capacity at constant volume and constant
pressure and m is the number of heat capacities. The
values of RMSEP obtained for the proposed models by
using ΘV (T ) = ΘP (T ) = 78.5 K and n = 3 from 1 K to
80 K and n = 2 from 80 K to 400 K were found to be
0.5063 and 0.5654 for constant volume and constant pres-
sure heat capacities, respectively. The value of RMSEP
obtained for the Debye model was found to be 1.437.
These results show that the proposed model obtained by
using n = 3 from 1 K to 80 K and n = 2 from 80 K to
400 K fits the experimental data better than the other
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models and tungsten exhibits dimensionality crossover
from 3 to 2 at about 80 K.

The values of entropies of tungsten obtained from the
Debye model, the proposed and the polynomial models
are shown in Fig. 5.

Fig. 5. Temperature dependence of entropy of tung-
sten.

The RMSEP values for entropy are obtained from the
following equation:

RMSEP(S) =

√√√√ 1

m

m∑
i=1

(Spred − Spoly)
2
, (27)

where Spoly is the entropy obtained from the polynomial
model and Spred is the entropy obtained from the pro-
posed and the Debye models. The values of RMSEP
obtained for the proposed and the Debye models were
found to be 0.3795 and 2.4858, respectively. These re-
sults and Fig. 5 show that the proposed model fits the
data better than the Debye model.

Enthalpy equation cannot be obtained from the Debye
model. The enthalpy values of tungsten obtained from
the proposed and polynomial models are shown in Fig. 6.

Fig. 6. Temperature dependence of enthalpy of tung-
sten.

The RMSEP value for enthalpy is obtained from the
following equation:

RMSEP(H) =

√√√√ 1

m

m∑
i=1

(Hpred −Hpoly)
2
, (28)

where Hpoly is the enthalpy obtained from polynomial
model and Hpred is the enthalpy obtained from the pro-
posed model. The value of RMSEP was found to be
54.71. This result and Fig. 6 show that the proposed
model fits the data very well. The value of ΘV (T ) is
equal to the value of ΘP (T ) and CPmax is approximately
equal to 3R. Therefore, the RMSEP values of entropy
and enthalpy obtained for constant volume and constant
pressure are approximately equal to each other.

4. Conclusions

The values of ΘV and ΘP were found to be 78.5 K for
tungsten. Tungsten shows the dimensionality crossover
from n = 3 to n = 2 at about 80 K. The temperature
and n dependence of ΘD(T ) and the non-monotonic be-
havior were discussed. The relationship between n and
ΘV (T ) was given. The heat capacity and entropy values
predicted by the proposed models were compared with
the values predicted by the Debye models. The results
have shown that the proposed models fit the data better
than the Debye models. The enthalpy values predicted
by the proposed models were compared with the values
predicted by the polynomial model.
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