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The main results of theoretical investigations related to the questions of transition radiation of a charged par-
ticle in a regular waveguide with periodically modulated anisotropic magnetodielectric filling, which were carried
out by the author during several years, are summarized in this report. It is assumed that the charged particle
moves perpendicular to the waveguide axis with a constant velocity. The analytical expressions for the transverse-
electric and transverse-magnetic fields in a first approximation with respect to the small indexes of modulation are
found. The energies of transition radiation in the region of “weak” interaction between the radiation wave and the
modulated filling in the case of rectangular waveguide are calculated. The analysis of obtained results shows that
the fields in the waveguide represent the set of space harmonics with different amplitudes and in the expressions
for the energy of transition radiation, unlike for the case of the unmodulated filling, a member proportional to the
modulation indexes of the first degree, is added.
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1. Introduction

In [1] the problem of transition radiation of charged
particle, moving perpendicular to the axis of the wave-
guide with anisotropic magnetodielectric filling was
solved. In this work the similar problem in the case, when
the anisotropic magnitodielectric filling of the waveguide
is modulated in space by a periodic law, is considered.
This problem represents certain interest from the point
of view of development of the theory and possible appli-
cations of periodic media in various fields of microwave
electronics [2–8].

2. Statement of the problem and its solution

Let a charged particle with a charge q propagates
through the waveguide along the Ox axis with a constant
velocity v = {v; 0; 0} perpendicularly to the axis of the
waveguide oz and intersects the waveguide surface at
the points A1 (x1, y0, 0) and A2 (x2, y0, 0). We shall
assume, that the anisotropic magnetodielectric filling of
the waveguide is modulated along z axis according to
the harmonic law and the dielectric permittivity and
magnetic permeability of the filling have the form

_

ε =

 ε1 0 0

0 ε1 0

0 0 ε2 (z)

 ,
_

µ =

 µ1 0 0

0 µ1 0

0 0 µ2 (z)

 , (1)

where
ε2 (z) = ε02 (1 +mε cos k0z) ,

µ2 (z) = µ0
2 (1 +mµ cos k0z) , (2)
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ε1 = const, µ1 = const, ε02 = ε2 (z)|mε=0, µ0
2 =

µ2 (z)|mµ=0, mε � 1 and mµ � 1 are the small in-
dexes of modulation, k0 is the wave number of modu-
lation wave. As is known, the charge density and the
current density in this case are described using Dirac δ
function and have the form [1, 5]

ρ = qδ (x− vt) δ (y − y0) δ (z) ,

j = jx = qvδ (x− vt) δ (y − y0) δ (z) . (3)
The transverse-electric (TE) and transverse-magnetic
(TM) fields in the waveguide, as in our previous
works [1–6], we shall describe by means of longitudinal
components of the magnetic vector Hz (x, y, z, t) and of
the electric vector Ez (x, y, z, t). The wave equations for
H̃ωz = µ2 (z)Hωz and Ẽωz = ε2 (z)Eωz can be obtained
from Maxwell equations taking into account Eq. (1). Cal-
culations lead to the following wave equations in Fourier
representation

∆⊥H̃ωz +
µ2 (z)

µ1

∂2H̃ωz

∂z2
+ ε0µ0ε1µ2 (z)ω2H̃ωz =

µ2 (z)
∂jω
∂y

, (4)

∆⊥Ẽωz +
ε2 (z)

ε1

∂2Ẽωz
∂z2

+ ε0µ0µ1ε2 (z)ω2Ẽωz =

ε2 (z)

ε1ε0

∂ρω
∂z

, (5)

where

jω =
1√
2π
qδ (y − y0) δ (z) e iωx/v, (6)

ρω =
q√
2πv

δ (y − y0)) δ (z) e iωx/v. (7)

∆⊥ = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace
operator. The solutions of the Eqs. (4) and (5) will be
sought in the form

(174)
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H̃ωz =

∞∑
n=0

H̃n (z)
_

ψn (x, y) , (8)

Ẽωz =

∞∑
n=0

Ẽn (z)ψn (x, y) , (9)

where the orthonormal eigenfunctions
_

ψn (x, y), ψn (x, y)

and the corresponding eigenvalues
_

λn, λn of the second
and first boundary-value problems for the cross-section
of the waveguide (the Neuman and Dirichlet problems)
satisfy to known Helmholtz equations with appropriate
boundary conditions (see (10) and (11) from [5]). The an-
alytical expressions for the transverse components of the
TE an TM fields are obtained from the Maxwell equa-
tions. In Fourier representation they have the form

Hωτ =
1

µ1

∞∑
n=0

_

λ−2n
dH̃n (z)

dz
∇
_

ψn (x, y) ,

Eωτ = − iωµ0

∞∑
n=0

_

λ−2n H̃n (z)
[
z0∇

_

ψn (x, y)
]
, (10)

for TE field and

Hωτ = − iωε0

∞∑
n=0

λ−2n Ẽn (z) [z0∇ψn (x, y)] ,

Eωτ =
1

ε1

∞∑
n=0

λ−2n
dẼn (z)

dz
∇ψn (x, y) , (11)

for TM field, where ∇ = i (∂/∂x) + j (∂/∂y) is the two-
dimensional Hamilton operator (nabla), z0 is the unit
vector along the Oz axis, index τ indicates transverse
components.

By substituting (8) and (9) into the (4) and (5) and
having made some transformations in view of (2), (3),
(6) and (7) for H̃n (z) and Ẽn (z) we obtain the following
equations

d2H̃n (z)

dz2
+

_

χ2
nH̃n (z) = − qµ1√

2π
δ (z)

_

Bn, (12)

d2Ẽn (z)

dz2
+ χ2

nẼn (z) =
q√

2πvε0
δ′ (z)Bn, (13)

where
_

Bn =

x2∫
x1

∂
_

ψn (x, y)

∂y

∣∣∣∣∣
y=y0

e iωx/v dx,

_

χ)
2

n =
µ1

µ0
2

[(_
χ0
n

)2
+mµ

_

λ2
n cos k0z

]
,(_

χ0
n

)2
= ε0µ0ε1µ

0
2ω

2 −
_

λ2
n, (14)

Bn =

x2∫
x1

ψn (x, y)|y=y0 e iωx/v dx,

χ2
n =

ε1
ε02

[(
χ0
n

)2
+mελ

2
n cos k0z

]
,(

χ0
n

)2
= ε0µ0µ1ε

0
2ω

2 − λ2n. (15)

By substituting (14) and (15) into Eqs. (12) and (13), by
introducing a new variable s = k0z/2 and by decompos-
ing in Fourier series the coefficients of H̃n (z) and Ẽn (z),
while limiting to the first three space harmonics, we ob-
tain the following inhomogeneous Mathieu-Hill type dif-
ferential equations

d2H̃n (s)

ds2
+

1∑
k=−1

_

θnk e2 iksH̃n (s) =

− qµ1√
2π
δ (s)

_

Bn, (16)

d2Ẽn (s)

ds2
+

1∑
k=−1

θnk e2 iksẼn (s) =

q√
2πvε0

δ′ (s)Bn, (17)

where
_

θn0 =
4µ1

(_
χ0
n

)2
k20µ

0
2

,
_

θn±1 =
2µ1

_

λ2
n

k20µ
0
2

mµ, (18)

θn0 =
4ε1
(
χ0
n

)2
k20ε

0
2

, θn±1 =
2ε1λ

2
n

k20ε
0
2

mε. (19)

The solutions of the corresponding homogeneous equa-
tions will be sought in the form

H̃n (s) = e i
_
µns

1∑
k=−1

_

Cnk e2 iks,

Ẽn (s) = e iµns
1∑

k=−1

Cnk e2 iks, (20)

where the characteristic numbers
_

µn, µn and the ampli-
tudes

_

Cnk , C
n
k are the unknown quantities.

Substitution of (20) into the homogeneous equations
results in the dispersion equations with respect to

_

µn,
µn and in a system of equations with respect to

_

Cnk , C
n
k .

By solving the resulting equations in the region of
“weak” (not resonant) interaction between the radiation
wave and the modulation wave

(_
θn0 > 1, θn0 > 1

)
, for

_

µn, µn and
_

Cnk , C
n
k in the first approximation on the

small indexes of modulation we get

_

µ2
n
∼=

_

θn0 ,
_

Cn±1
∼=

_

θn1
_

Cn0

4

(
1±

√
_

θn0

) , (21)

µ2
n
∼= θn0 , Cn±1

∼=
θn1C

n
0

4
(
1±

√
θn0
) , (22)

where
_

Cnk and Cnk can be found from the con-
dition of normalization. The particular solutions
of the inhomogeneous wave equations (16) and (17)
will be sought by the method of variation of con-
stants. The calculations in view of the radiation con-
dition (no waves propagating to the radiation source)



176 E. Gevorkyan

lead to the following expression for the TE and TM fields
of transition radiation of a charged particle

H̃n (z) =
iξn

_

Cn0
_

µnk0

1∑
k=−1

_

Cnk cos
k0
(_
µn + 2k

)
z

2
, (23)

Ẽn (z) =
k0ζn
2Cn0

1∑
k=−1

Cnk sin
k0 (µn + 2k) z

2
, (24)

where
ξn = − qµ1√

2π

_

Bn, ζn =
q√

2πε0v
Bn. (25)

The expressions (23) and (24) show that TE and TM
fields of the transition radiation of charged particle in its
motion perpendicular to the axis of the waveguide with
periodically modulated anisotropic magnetodielectric fill-
ing is a sum of spatial harmonics with different ampli-
tudes. The amplitude of the zeroth harmonic (k = 0) is
not dependent on the modulation indexes and the ampli-
tudes of the plus and minus first harmonics (k = ±1) are
proportional to the modulation indexes in the first order.

3. Energies of transition radiation.
Results for the case of rectangular waveguide

The energies of transition radiation of particle moving
along its trajectory from x1 to x2 we shall find with the
help of the value of the braking force qEωx acting on
the particle via the field created by the particle. In the
region of weak interaction between the modulation wave
and the radiation wave the calculations with regard of
(10), (11), (18), (19), (21), (22), (23), (24) and (25)
in the first approximation, with respect to indexes of
modulation, lead to the following expressions

S(TE)
n =

µ0k
2
0

√
µ0
2µ1q

2

4π
_

λ2
n

(26)

×Re
∞∫
0

(
1 +

µ1

_

λ2
n

k20µ
0
2 − 4µ1

(_
χn0
)2
mµ

)
ω
_

χn0

∣∣∣_Bn∣∣∣2 dω,

S(TM)
n =

k0q
2

2πε0
√
ε1ε02λ

2
nv

2
(27)

×Re i

∞∫
0

(
1 +

3ε1λ
2
n

k20ε
0
2 − 4ε1 (χ0

n)
2mε

)
ω |Bn|2 dω,

where from the regions of integration are excluded the
frequencies which satisfy the conditions

k20µ
0
2 − 4µ1

(_
χn0
)2

= 0, k20ε
0
2 − 4ε1

(
χ0
n

)2
= 0. (28)

If in (26) and (27) we consider the limit of mµ → 0 and
mε → 0, we shall receive the expressions for the energies
of transition radiation of a charged particle in the case
of unmodulated filling of the waveguide. Let us consider
the case of a rectangular waveguide, the walls of which
are defined by the equations x = 0, y = 0, x = a, y = b.
By performing the integration with respect to variable

x (0 ≤ x ≤ a) in the expressions for
_

Bn and Bn (see (14)
and (15)), taking into account that the eigenfunctions(_
ψn (x, y) , ψn (x, y)

)
and eigenvalues

(_
λn, λn

)
are ex-

pressed by the formulas (18) and (19) from [1], for STE
n,m

and STM
n,m we get

STE
n,m =

µ0

√
µ0
2µ1q

2πn2δnδmk
2
0 sin2 πn

b y0

ab3v2
_

λ2
n,m

×Re
∞∫
0

1 +
µ1

_

λ2
n,m

k20µ
0
2 − 4µ1

(_
χn,m0

)2mµ


× ω3

_

χn,m0

sin2
(πm
a
− ω

v

) a
2[(πm

a

)2
− ω2

v2

]2 dω, (29)

STM
n,m =

8q2πm2k0 sin2 πn
b y0

ε0
√
ε1ε02a

3bv2λ2n,m

×Re i

∞∫
0

(
1 +

3ε1λ
2
n,m

k20ε
0
2 − 4ε1

(
χ0
n,m

)2mε

)

×
sin2

(πm
a
− ω

v

) a
2[(πm

a

)2
− ω2

v2

]2 ωdω, (30)

where δi = 2, i 6= 0, δ0 = 1. As can be seen from (29) and
(30), when the condition ny0/b = k (k = 0, 1, 2, ...; k ≤ n)
holds, in radiation there are no corresponding modes with
the first index n. From (29) and (30) it also follows that
at n = 0, STE

0,m = 0, while at m = 0, STMn,0 = 0. We also
note that when the condition

(
πm
a −

ω
v

)
a
2 = lπ (l is a

nonzero integer) holds, the energies of transition radia-
tion are zero.

4. Conclusions

In conclusion we note that the results obtained above
allow to calculate the energies of transition radiation in
the region of “strong” interaction between the modulation
wave and radiation wave and to find some peculiarities of
radiation in this region. Note, that the frequency range
of the strong interaction is determined from the condi-
tions (28), when the second terms in the brackets under
the integrals in (26) and (27) or in (28) and (29) are
meaningless.
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