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This paper studies the attenuation of the axisymmetric longitudinal waves propagating in a bi-material com-
pound solid cylinder made of viscoelastic materials, the constitutive relations of which are described by utilizing the
fractional exponential operators of Rabotnov. Rheological parameters are introduced and through these parameters
the influence of the material viscosity on the attenuation coefficient of the propagating waves is investigated. Nu-
merical results of the attenuation dispersion and the corresponding dispersion curves are presented and discussed.
In particular, it is established that the dependence between the coefficient of attenuation and a certain rheological
parameter can have a non monotonic character.
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1. Introduction

According to the review made in the papers by Ak-
barov et al. [1, 2] and Kocal and Akbarov [3] almost
all investigations related to the wave dispersion in the
elements of constructions made of viscoelastic materi-
als have been made within the scope of the simplest
Voigt model or within the scope of the hysteretic (non-
dispersive attenuation) model.

However, for more real and practical cases it is neces-
sary to use more complicated and adequate viscoelastic
models for investigations of the dispersion and attenua-
tion of waves propagating in such structural elements as
plates, cylinders, etc.

As an example for the mentioned complicated and real
model, the model based on fractional exponential oper-
ators, developed by Rabotnov [4], can be taken. The
attempts in this field have been made in the work of Ak-
barov et al. [1, 2] and Kocal and Akbarov [3] in the first
two of which the dispersion of the axisymmetric longitu-
dinal waves in bi-layered hollow and solid cylinders for
the given attenuation case is investigated. However, in
the third paper of the authors the attenuation of the ax-
isymmetric longitudinal waves in the bi-layered hollow
cylinder is investigated for given dispersion cases.

Taking into account the great significance of the re-
sults of Kocal and Akbarov [3], in the present pa-
per the investigation is carried out for the solid cylin-
der made of bi-material, i.e. in the present pa-
per the attenuation of the axisymmetric longitudinal
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waves in the bi-material compound solid cylinder is in-
vestigated for given possible wave dispersion cases.

2. Formulation of the problem

Consider the bi-material solid cylinder and assume
that the radius of the cross-section circle of the inner
cylinder is R and the thickness of the outer covering hol-
low cylinder is h (Fig. 1). The values related to the inner
solid and external hollow cylinders will be denoted by
the upper indices (2) and (1), respectively. Assume that
the materials of the constituents are isotropic, homoge-
neous and hereditary-viscoelastic. We use the cylindrical
system of coordinates Orθz to describe the positions of
the points of the system under consideration. Moreover,
we assume that the cylinders have infinite length in the
direction of the Oz axis.

Fig. 1. The geometry of the compound cylinder.

Let us consider the axisymmetric wave attenuation
along the Oz axis in the considered cylinder with the
use of the following field equations and relations.
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Equations of motion:
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Constitutive relations:
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In Eqs. (1–4) the conventional notation is used.
Consider also formulation of the boundary and contact

conditions. According to Fig. 1 we can write the follow-
ing boundary and contact conditions:
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where (ij)→ rr; rz, (i)→ r; z. (5)
This completes the formulation of the problem of the
axisymmetric longitudinal wave dispersion in the bi-
material solid cylinder made of viscoelastic materials
with arbitrary kernel functions λ(n)1 (t) and µ(n)

1 (t) which
enter the constitutive relations (2) and (3).

The results obtained within the scope of the foregoing
problem formulations allow one to determine the attenu-
ation rule of the axisymmetric waves propagating in the
compound solid cylinder made of viscoelastic materials.

These results are new not only in the sense of the
new problem formulation, but also in the sense of us-
ing the fractional exponential operators for describing
the viscoelastic properties of the materials. These op-
erators allows to describe all physico-mechanical prop-
erties of the viscoelastic materials with high accuracy
and in accordance with corresponding experimental data.
At the same time, the results obtained within the scope
of the foregoing formulation allow to control the wave
attenuation through the rheological parameters of the
materials of cylinders. Above-stated particularities of

the considered problem determine the new physical in-
sights on the wave propagation and its attenuation
in the viscoelastic medium.

3. Method of solution

As we consider the time-harmonic wave propaga-
tion along the Oz axis, we can represent all sought
values as u(i)(r, z, t) = v(i)(r)e(kz−ωt), ε(ij)(r, z, t) =

γ(ij)(r)e(kz−ωt). By carrying out the mathematical ma-
nipulations, made by authors in the foregoing papers, we
obtain the following constitutive relations for the case
under consideration.
T
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The meaning of the notation used in (6) is given, for
instance, in the paper by Akbarov et al. [1].

Thus, substituting the expression (6) into the equation
of motion (1) and taking the relation (4) into consider-
ation, we obtain the equations of motion, boundary and
contact conditions in amplitude terms of the sought va-
lues.

For the solution of these equations, according to
Guz [5], we employ the following representation for the
displacement amplitudes:
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where X(n) satisfies equation[(
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In (8) ζ(n)2 and ζ(n)3 are determined from the correspond-
ing equations given, for instance, in the paper by Akbarov
et al. [1].

Thus, the following expression for the function X(n) is
obtained from Eq. (8)
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where J0(x) and Y0(x) are Bessel functions of the first
and second kinds with zeroth order, respectively.

Using expression (9) and the corresponding equations
and relations given above we obtain the following disper-
sion equation:

det ‖ βnm ‖= 0, n;m = 1, 2, ..., 6. (10)
The explicit expressions of the components of the matrix
(βnm) are given in the paper by Akbarov et al. [2].
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4. Numerical results and discussion

According to the well-known physico-mechanical con-
siderations, under time harmonic wave propagation in a
viscoelastic material, it is necessary to assume that the
wave number k is a complex one and can be presented
as k = k1 + ik2 = k1(1 + iβ), β = k2/k1, where k2
(or parameter β), i.e. the imaginary part of the wave
number k, defines the attenuation of the wave ampli-
tude under consideration and β is called the coefficient
of the attenuation.

In the present investigation we determine the values of
the attenuation parameter β from the dispersion equation
(10) under possible selected values of the wave propa-
gation velocity c = ω/k1 and the problem parameters
c/c

(2)
20 , k1R and h(1)/R. Under this investigation the

function µ1(t) in (3), according to Rabotnov [4], is ex-
pressed through the function
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In (11) Γ(x) is the gamma function. Moreover, the con-
stants α(n), β(n)

0 and β(n)
∞ in (11) are the rheological pa-

rameters of the material of the n-th layer.
As in the foregoing papers of the authors, we introduce
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The mechanical meaning of the parameters in (12) is
explained in the paper by Akbarov et al. [2], according to
which, parameter d(n) characterizes the long-term values
of the elastic constants of the n-th material. However,
parameter Q(n) characterizes the creep time of these ma-
terials. An increase (a decrease) in the values of these
parameters means a decrease (an increase) in the magni-
tude of the influence of the viscosity of the materials on
the wave dispersion in the system under consideration.

Numerous numerical results and mechanical consid-
erations show that the dispersion curves obtained for
the corresponding purely elastic case with long-term val-
ues of the elastic constants (i.e. in the case where
d(1) = d(2) = 0) and the dispersion curves obtained for
the corresponding purely elastic case with instantaneous
values of the elastic constants (i.e. in the case where
d(1) = d(2) = ∞), under satisfaction of certain condi-
tions, can be taken as the lower and upper limit cases,
respectively, for the dispersion curves obtained for the
viscoelastic cases.

This statement allows us to select admissible disper-
sion curves and wave propagation velocity c for the vis-
coelastic case and according to these curves (or velocity),

to find the attenuation coefficient β from the solution of
the dispersion equation (10) for each fixed value of the
dimensionless wavenumber k1R.

For detailed illustration of the foregoing algorithm
we consider the cases where d(1) = d(2) = 25 and
d(1) = d(2) = 35, under ν(1)0 = ν

(2)
0 = 0.3 (where ν(k)0

is the Poisson ratio of the k-th material), h(1)/R = 0.1,
α(1) = α(2) = 0.5 and µ

(2)
0 /µ

(1)
0 = 0.5. Let us assume

that Q(1) = Q(2) and let us consider attenuation curves
illustrated in Fig. 2 which are obtained in the cases where
d(1) = d(2) = 25 (Fig. 2a) and d(1) = d(2) = 35 (Fig. 2b)
by utilizing the algorithm described in the paper by Ko-
cal and Akbarov [3]. Note that these attenuation curves
correspond to the dispersion curves given in Fig. 3 which
are also constructed for the cases where d(1) = d(2) = 25
(Fig. 3a) and d(1) = d(2) = 35 (Fig. 3b).

Fig. 2. Attenuation curves obtained in the cases where
d(1) = d(2) = 25 (a) and d(1) = d(2) = 35 (b) for the
assumed dispersion curves indicated by numbers 1 and 2
in Fig. 3.
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Fig. 3. Selected dispersion curves and dispersion
curves obtained under instantaneous and long-term val-
ues of the elastic constants for the cases where d(1) =
d(2) = 25 (a) and d(1) = d(2) = 35 (b).

It follows from Fig. 3 that the main attenuation of the
waves under consideration takes place in the cases where
0 < k1R ≤ 5 and at a certain value of the wave-number
k1R this attenuation has its maximum.

Moreover, the graphs given in Fig. 2 show that the de-
pendence between the attenuation coefficient β and the
rheological parameter Q has non monotonic character,
i.e. transition below (above) a certain value of the Q
causes an increase (a decrease) in the values of the atten-
uation coefficient β.

Numerical results obtained for other problem parame-
ters show that they in the quantitative sense are similar
with those given here. Therefore we do not give these
results here.

5. Conclusions

Thus, in the present paper the attenuation of the ax-
isymmetric longitudinal waves, propagating in the bi-
material compound solid cylinder made of viscoelastic
material, were calculated using the fractional exponential
operators proposed by Rabotnov [4]. Numerical attenu-
ation curves are presented and discussed and according
to these curves the following conclusions are made:

• For the considered values of the problem param-
eters, the attenuation of the axisymmetric waves
becomes more significant in the cases where 0 <
k1R < 5, i.e. the magnitude of the attenuation
depends on the wavelength of the wave under con-
sideration;

• Maximal values of the attenuation coefficient β
appear approximately at k1R ≈ 2.0, i.e. under
L ≈ πR, where L is wavelength;

• There exists such a value of the rheological param-
eter Q (we denote it by Q∗) for which max {β}, i.e.
the maximum of the attenuation coefficient with
respect to the k1R, has its maximum (we denote
it by max {max {β}}. However, in the cases where
Q > Q∗ (in the cases where Q < Q∗) an increase
(a decrease) in the values of Q causes a decrease in
max {max {β}};

• In the qualitative sense the obtained numerical re-
sults agree with the corresponding results obtained
in the paper by Kocal and Akbarov [3].
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