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In this study we compare the income distributions for men and women in Poland in 2014. To examine
the di�erences in the entire range of income values we utilize the hazard function approach. A �exible hazard-
function based estimator in the presence of covariates (education, age, etc.) is used to construct conditional density
and cumulative distribution functions. Then, we decompose the di�erences between two distributions using the
counterfactual distribution. We estimate also the Lorenz curves for incomes and decompose the di�erences between
the values of the Gini coe�cients.
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1. Introduction

A common feature of labour markets around di�erent
world regions is a relatively large gender pay gap [1].
Most studies �nd some variation of the gender wage gap
across the whole wage distribution (e.g. a small aver-
age wage gap might conceal glass ceiling e�ects at the
top of the wage distribution; see [2] for Sweden, [3] for
Spain, [4] for many other European countries). Addition-
ally, the decompositions carried out show that a large
part of this gap cannot be explained by di�erences in
the labor-market skills of women and men (e.g. [5] for
USA, [6] for Poland).
Recently statistical techniques of income inequalities

decomposition (e.g. [7�10]) are becoming more popular.
The idea behind these techniques is that the pay gap
might vary across the income distribution and they go
far beyond the simple comparison of average values.
The goal of the paper is to examine di�erences between

the income distributions for men and women in Poland.
We decompose the di�erences between two distributions
using the counterfactual distribution, which is a mixture
of a conditional distribution of the dependent variable
and a distribution of the explanatory variables. Such a
counterfactual distribution can be constructed in various
ways (see [11]). To examine the di�erences in the entire
range of income values we use the hazard function ap-
proach (we use a �exible hazard-function based estima-
tor in the presence of covariates to construct conditional
density and cumulative distribution functions). Then we
estimate the Lorenz curves for incomes and decompose
the di�erences between the values of the Gini coe�cients.
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2. Methodology of research

2.1. The idea of decomposing the income inequalities

Whenever is a need to explain the di�erences between
expected values of dependent variable in two compar-
ison groups we can apply the Oaxaca�Blinder decom-
position method [12, 13]. Let variable Yg be the per-
sonal income in group g, g = M , W . The standard
assumption used in this decomposition is that the out-
come variable Yg is linearly related to the covariates Xg

(the vector of individual characteristics of the person),
and that the error term vg is conditionally independent
of Xg: Yg = Xgβg + νg, g = M,W . Then, the expected
value of Yg is E(Yg |Xg) = Xgβg and the Oaxaca�Blinder
decomposition for the average income inequality between
two groups is as follows:

∆̂µ = ȲM − ȲW = X̄M β̂M − X̄W β̂W =

X̄M (β̂M − β̂W )︸ ︷︷ ︸
unexplained part

+ (X̄M − X̄W )β̂W︸ ︷︷ ︸
explained part

(1)

The unexplained part in the equation is the �wage struc-
ture� e�ect and is result of di�erences in the �prices� of
individual people's characteristics. It can be interpreted
as the labor market discrimination. The explained part
is an e�ect of characteristics and expresses the di�erences
of the potentials of people in two groups. The approach
presented later in this paper can be viewed as an ex-
tension of the Oaxaca�Blinder decomposition where the
whole conditional income distribution are estimated us-
ing parametric methods.
Now, let FYg (y) be the distribution function for the

variable Yg:

FYg (y) =

∫
FYg|Xg (y|X)dFXg (X),

g = M,W. (2)

We extend the mean decomposition analysis to the case
of di�erences between the two income distributions.
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For this purpose, we construct a so-called counter-
factual distribution FY CW (y). This is the distribution

which represents the hypothetical income distribution
function that would prevail for people in group W if
they had the distribution of characteristics of group
M : FY CW (y) =

∫
FYW |XW (y|X)dFXM (X). Then, the

di�erence in income distributions for men and women
can be calculated as [11]:

FYM (y)− FYW (y) =

[FYM (y)− FY CW (y)]︸ ︷︷ ︸
unexplained part

+ [FY CW (y)− FYW (y)]︸ ︷︷ ︸
explained part

. (3)

2.2. The estimation of income distribution function in
the presence of covariates

Following Donald et al. [14] we apply a hazard model
to income data. Let the non-negative income variable
Y have distribution function F (y |X ) conditional on a
vector of covariates X. The probability that a person
has at least income y is given by the survival function
S(y |X ) = Pr [Y ≥ y |X ] = 1 − F (y |X ). The hazard
function h (y|X) = f (y|X)/S(y|X) gives the probability
that the income equals y conditional on the income being
at least as large as y.
A convenient model for the in�uence of covariates on

the hazard function is the conditional piecewise-constant
hazard model (exponential hazard with the hazard piece
dummies) [15]. To allow for the �exible speci�cation of
the baseline hazard we divide the income distribution
into P segments: 0 = c0 < c1 < ... < cP =∞. Then the
hazard function is given by

h(y|X) = h0k(y) exp(Xβ)

for y ∈ (ck−1, ck), k = 1, . . . , P, (4)

where h0(y) is the baseline hazard and the e�ect of X
is constant within each segment. The survival function
then becomes

S(y |X ) = exp
[
−
k−1∑
j=1

(cj − cj−1)h0j(y) exp(Xβ)

−(y − ck−1)h0k(y) exp(Xβ)
]
for y ∈ (ck−1, ck). (5)

An estimate of the survival function Ŝ(y |X ) makes es-
timating the distribution function F (y |X ) very simple:

F̂ (y|X) = 1− Ŝ (y|X). The individual results are �nally
averaged at incomes values corresponding to each of the
baseline segments giving FY (y).

2.3. The Lorenz curve estimator and the Gini index
calculation

Once a function FY (y) is obtained, one can then esti-
mate the Lorenz curve and the generalized Lorenz curve
conditional upon the covariates. Let τ ∈(0,1) and
Qτ = F−1Y (τ) be the τ th population quantile of Y . Thus,

τ =
∫ Qτ
0

f(y)dy = F (Qτ ). The Lorenz curve of Y is then
de�ned by

L(τ) =

∫ Qτ
0

yf(y)dy∫∞
0
yf(y)dy

=

∫ τ
0
F−1Y (s)ds

E(Y )
(6)

and plots the proportion of the total income held by
the lowest (τ× 100) percent of the population against
τ [16, 17]. Note that L(0) = 0, L(1) = 1. The Lorenz
curve equal to the 45◦ line denotes perfect equality and
any inequality causes the Lorenz curve to fall below this
line. It is also possible to extend Lorenz curve analysis
to incorporate the mean, de�ning the generalized Lorenz
curve as GL(τ) = E(Y )L(τ). Comparing the generalized
Lorenz curves for two income distributions one can see
di�erences in incomes means and di�erences in disper-
sion. From the hazard model described above we obtain
for τ ∈(0,1) the following formulae:

L(τ) =
(1− τ) ln(1− τ)

1 + λm+1cm −
∑m
j=1 (cj − cj−1)λj

+ τ, (7)

GL(τ) =
(1− τ) ln(1− τ)

λm+1

+
τ
(

1 + λm+1cm −
∑m
j=1 (cj − cj−1)λj

)
λm+1

, (8)

where λj = h0j(y) exp(Xβ).

The most common measure of inequality, the Gini
index G, is the ratio of the area between the Lorenz
curve and the 45◦ line (called the area of concentration)
to the area under the 45◦ line. Having estimated the
Lorenz curves for men's and women's incomes it is pos-
sible to calculate the Gini indices [17, 18]. Using the
counterfactual distribution FY CW (y), the counterfactual

Lorenz curve can be derived and then the counterfactual
Gini coe�cient value can be calculated. Finally, we can
form the decomposition of di�erences in Gini's indices as
GYM −GYW = [GYM −GY CW ]︸ ︷︷ ︸

unexplained part

+ [GY CW −GYW ]︸ ︷︷ ︸
explained part

.

3. Data

Our analysis is based on data from the European Union
Statistics on Income and Living Conditions project for
Poland in 2014. It collects source and amount of incomes,
labor force information, and general demographic char-
acteristics. The sample size is 9,904 records (5,177 for
males and 4,727 for females). The data concern annual
net employee incomes in 2014, expressed in ¿(the out-
come variable income). Each person is characterized by
attributes such as yearswork� quasi-continuous variable
from 0 to 54 years of work, educlevel � ordinal variable
from 1 (lowest education level) to 5 (highest), married �
binary variable, married (1) / unmarried (0), parttime �
binary variable, part-time (1) / full-time job (0), man-
ager � binary variable, supervisory managerial position
(1) / non-supervisory position (0).

The selected features of the variables are presented
in Table I.



Measuring and Explaining Income Inequalities in Poland. . . 1447

TABLE I

The mean values and the share of categories for selected
variables. Source: own calculation.

Variable Men Women Variable Men Women

av. income 7,165.94 5,900.21

ed
u
cl
ev
el

= 1 4.91% 3.89%

av. yearswork 20.09 18.46 = 2 1.45% 0.55%

married = 1 71.53% 69.60% = 3 68.57% 47.32%

parttime = 1 4.31% 10.09% = 4 2.55% 7.91%

manager = 1 18.68% 15.74% = 5 22.52% 40.32%

4. Results

In this section we analyse in detail, the di�erence in
the income distributions for men and women in Poland
using the decomposition methods described above.

In the �rst step the Oaxaca�Blinder decomposition has
been applied for the average values. There was a posi-
tive di�erence between average values of incomes. The
raw di�erential was equal to 1,265.73¿. The explained
e�ect was low and negative (�282.60 ¿), but the unex-
plained was huge and positive (1,548.33¿). The inequal-
ities examined should be assigned in the majority to the
coe�cients of estimated models rather than to the di�er-
entiation of individual characteristics.

Then, we estimated separately for men and women
the coe�cients for conditional piecewise-constant haz-
ard models (not presented due to lack of space). We
used 20 baseline segments with dividing points at the
20-quantiles of the unconditional pooled income distri-
bution. The plots of hazard are presented in Fig. 1.
The higher located graph of hazard for women indicates
greater exposure of women to the loss of earnings than
in the case of men.

Now we treat the hazard function as a �exible func-
tional form that allows us to generate the estimates of the
income distribution functions. First, the distributions
F̂Yg|Xg (y|X), g = M,K, were determined. Each of them
gives the probability that incomes will take values lower
than a certain level y (for �xed X and parameters β). To
illustrate the variability of both income levels and peo-
ple's characteristics along the income distribution, the
results for each individual were averaged over the in-
tervals (ck−1, ck), k = 1, ..., 20. The distribution func-
tions averaged in this way are presented in the form
of points connected by straight lines in Fig. 2. Since
F̂YW |XW (y|X) > F̂YM |XM (y|X) for all y, then for the
woman, the probability of not exceeding the income level
y is higher than for the male.

The counterfactual distribution F̂Y CW (y) was deter-

mined by setting, �rst, the distribution of incomes that
would prevail for women if they had the distribution
of men's characteristics (the parameters βW were taken
from the hazard model for women and the values of ex-
planatory variables XM for men). Then, the results were
averaged over the intervals (ck−1, ck), k = 1, ..., 20, gain-
ing the curve Favg_C_(y) in Fig. 2.

Fig. 1. The plots of hazard functions for men and
women, respectively.

Fig. 2. The averaged cumulative distribution functions
for incomes (for men � Favg_M_(y), for women �
Favg_W_(y), counterfactual � Favg_C_(y)).

In the next step, the quantiles for income distribu-
tions are determined by inverting the estimated distri-
bution functions. The precise values of Q̂g,τ = F̂−1Yg

(τ)

and Q̂CW,τ = F̂−1
Y CW

(τ) were computed using linear in-

terpolations. This allowed to decompose the income
gap for quantiles and to determine the explained and
unexplained components of the di�erence in terms of
quantiles. The results presented in Table II indicate
positive di�erences between male and female incomes
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TABLE IIDecomposition of di�erence in income distributions in terms of quantiles. Source: own calculation.

τ Q̂M,τ Q̂W,τ Q̂CW,τ Total di�erence Unexplained part Explained part

0.1 2,588.67 1,922.59 1,866.79 666.08 721.88 �55.80

0.2 3,553.51 2,999.38 3,026.52 554.13 526.99 27.14

0.3 4,109.81 3,571.89 3,544.49 537.92 565.32 -27.40

0.4 5,062.84 4,133.68 3,897.80 929.16 1,165.04 �235.88

0.5 5,688.47 4,823.51 4,488.98 864.96 1,199.48 �334.52

0.6 6,944.98 6,204.25 5,348.28 740.73 1,596.70 �855.97

0.7 8,714.88 8,262.12 6,385.50 452.76 2,329.39 �1,876.62

0.8 13,776.28 11,243.09 8,089.19 2,533.19 5,687.09 �3,153.90

0.9 85,765.00 63,218.94 14,509.47 22,546.06 71,255.53 �48,709.48

TABLE IIIDecomposition of di�erence in Gini index values. Source: own calculation.

Scenario GYM GYW GY C
W

Total di�erence Unexplained part Explained part

X_M, X_W original 0.2906 0.2731 0.2366 0.0174 0.0539 �0.0365

yearswork_W 10% 0.2906 0.2784 0.2366 0.0122 0.0539 �0.0417

educlevel_W 10% 0.2906 0.2918 0.2366 �0.0012 0.0539 �0.0552

parttime_W 10% 0.2906 0.2726 0.2366 0.0180 0.0539 �0.0359

manager_W 10% 0.2906 0.2741 0.2366 0.0165 0.0539 �0.0374

at each level of income. These di�erences are non-
monotonous: they are initially decreasing (among the
poorest), for quantiles of the order 0.4�0.6 are higher
again, then lower again, and on the right end of the in-
come distribution grow stronger (among the richest).

The unexplained component of the income gap (asso-
ciated with the �valuation� of the people's characteris-
tics by the market) increases with the amount of income.
This demonstrates that the discrimination is more evi-
dent for higher values of incomes. The negative values
of the explained component are especially large in the
groups of the best earning people. This re�ects the re-
duction of wage inequality, probably due to �better� char-
acteristics of women than men. Such a favorable reduc-
tion in the gap for women deepens as the higher income
groups are considered (maybe women in the richest group
should earn much more than men).

The last step of our analysis concerned the estimation
of the Lorenz curves and the generalized Lorenz curves.
From the formulae (7) and (8) we received the so-called
pseudo-Lorenz curves (the intermediate results are av-
eraged in the X-space over the intervals (ck−1, ck), k =
1, ..., 20) presented in Fig. 3 (the curves L_M, L_W).
The counterfactual Lorenz curve was also derived (L_C).
Comparing the generalized Lorenz curves for men's and
women's income distributions (GL_M and GL_W in
Fig. 3) we can see di�erences in incomes means (by their
right most ordinates) and di�erences in dispersion (by
how they are bowed out).

Finally, having estimated the pseudo-Lorenz
curves for men's and women's incomes we calcu-
lated the Gini indices by interpolation (see Ta-
ble III). According to the values obtained the
income inequalities between men are bigger than
between women (the di�erence equals 0.0174).

Fig. 3. The pseudo-Lorenz curves.
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The Gini coe�cient value for the counterfactual distri-
bution was also calculated, which made it possible to
decompose the observed di�erence.
Incorporating the e�ects of covariates into the Lorenz

curve ordinate estimates makes it possible to infer the
e�ects of various person's characteristics on the shape of
this curve and on the Gini coe�cient value. Especially,
it is possible to calculate the e�ects on inequality of such
scenarios like e.g. the increase in women's part-time em-
ployment by 10% or increase in the number of managerial
positions held by women by 10% (Table III).

5. Conclusion

In this paper we applied the methods of the decom-
position of di�erences between the income distributions.
We started with the decomposition of the average values
for incomes by using the Oaxaca�Blinder method. There
was a positive di�erence between the mean values of log
incomes. The explained e�ect was low and negative, but
the unexplained was huge and positive.
Then we estimated two conditional piecewise-constant

hazard models for men and women, separately. We also
constructed the counterfactual distribution. Using the
models estimated makes it possible to decompose the in-
equalities between incomes along the whole distribution.
The total e�ect increases with income, the explained ef-
fect is lower and negative.
The method allows us to investigate the di�erences in

incomes for two groups of people analyzing the Lorenz
curves and the Gini indices for inequality.
Results obtained and presented here seem to be very

promising and the subject is de�nitely worth of further
explorations. We plan to develop some of the related
ideas in a forthcoming paper.
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