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In this paper, we provide a statistical analysis of high-resolution contact pattern data within primary and
secondary schools as collected by the SocioPatterns collaboration. Students are graphically represented as nodes
in a temporally evolving network, in which links represent proximity or interaction between students. This article
focuses on link- and node-level statistics, such as the on- and o�-durations of links as well as the activity potential
of nodes and links. Parametric models are �tted to the on- and o�-durations of links, inter-event times and node
activity potentials and, based on these, we propose a number of theoretical models that are able to reproduce
the collected data within varying levels of accuracy. By doing so, we aim to identify the minimal network-level
properties that are needed to closely match the real-world data, with the aim of combining this contact pattern
model with epidemic models in future work.
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1. Introduction

The use of networks to model contact patterns or in-
teractions between individuals has proved to be a step
change in how epidemics and other spreading processes
are modelled [1�6]. The basic ingredient of such mod-
els is to represent individuals by nodes and contacts be-
tween these as links between nodes. The use of graph-
theoretical methods has helped to reveal and understand
the role of contact heterogeneity, preferential mixing, and
clustering in how disease invade and spread [7, 8]. Hav-
ing good network models is crucial. Simple mechanistic
models that capture and preserve key properties of em-
pirical networks are often employed as they o�er greater
�exibility in changing and tuning various network prop-
erties. While such models and theory are well developed
for static networks, it is only recently that we have empir-
ically measured real-world time varying forms [1, 7�16].
Current underlying models for network-based epidemi-

ology fall into a handful of categories. Some just use
empirical data collected from sensors and apply an ap-
propriate disease model to this [7, 12, 15]. Others use a
fairly elementary model where links appear as in gath-
ered data, but are given lifespans drawn from a uniform
distribution [12], or are given a simple weighting drawn
directly from the data [13, 15]. Others take collected data
and use it to convert a series of fully connected networks
into sparse ones [13]. Alternative methods involve the use
of an idealised network [8], regular random network [7],
random Poisson network [7, 8], scale-free random net-
work [7] or lattice [8]. In this paper our aim is to analyse
an empirical time varying network, in a statistically rig-
orous way, and build theoretical models that are able to
reproduce and mimic the behaviour observed from data.

*corresponding author

We will re-analyse data previously collected by
the SocioPatterns collaboration (www.sociopatterns.org)
with special focus on time-varying contact patterns in
a primary [17, 18] and high [19] school. In particular
we will focus on measuring properties such as activa-
tion time and duration of links as well as o�-durations of
links. We will then propose and �t candidate parametric
distributions to the empirical data. Based on these, we
will propose a few di�erent theoretical time-varying net-
work models. Two di�erent model types are proposed.
The �rst model assigns on-o� durations to each link
from an appropriate probability distribution. Our sec-
ond model triggers activations at appropriate times (with
inter-event times being drawn from an appropriate distri-
bution), before selecting the link to be activated (using a
probability matrix drawn from the original data) and as-
signing an on-duration to that link from an appropriate
probability distribution. Even if these models do not cap-
ture all the important features of the real-world network,
they still provide a useful �rst approximation. Whilst we
focus on school classrooms, our approach can be adapted
to modelling other types of social interactions.

2. Data collection and description

In the original data � both for the primary and high
school students � the participants were equipped with
sensors that deemed them �in contact� if they were within
1 to 1.5 m of each other (an interaction), chosen by the or-
ganizers of the original study. This was to act as a proxy
of a close-range encounter during which a communicable
disease infection can be transmitted, for example, either
by cough or sneeze, or directly by hand contact [18].
Every 20 s, a radio packet would be exchanged between
the sensors, and all packets transferred would be relayed
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to a central system to be recorded. This scale was deemed
to allow an adequate description of person-to-person in-
teractions that includes brief encounters [18].

In both cases, this central system saved the data in
a CSV �le, with each row containing the timestamp (in
20 s intervals), the IDs of the two sensors in contact, and
some additional data about the two participants (such as
their class). We modify the original data slightly before
our initial analysis. Firstly, we remove any participants
marked as sta� from the data as their behaviour is di�er-
ent from that of school children. In fact, this amounts to
removing sta�-children links only, and links between chil-
dren, which potentially could be sta�-induced, are still
part of the contact data that we analyse. Some prelim-
inary analysis showed that the number of sta�-children
links is low when compared to the number of links in-
volving children only. In our data, there seems to be
little evidence to suggest that sta� would be responsible
for creating highly connected clusters of school children.
Whilst our simpli�cation could remove certain features,
we point out that the number of sta� is low (11 sta�
members across all datasets) and they are responsible
for only 5% of the originally recorded links, making it
problematic to draw statistically signi�cant conclusions
about potential behavior related to, or induced by, sta�.
The question remains to what extent sta� may be driv-
ing the contact pattern and, in future work, including
this feature may lead to an improved model � how-
ever, we feel that richer data describing these interactions
would be needed before we could con�dently add this to a
model. We emphasise that our simpli�cation did not re-
move links between school children that may have been a
result of sta� behaviour. In fact, in general, the in�uence
of teachers on network dynamics and in di�erent school
systems cannot be ruled out. In some countries, teachers
may interact with pupils only when pupils are called to
the teacher's desk for assessment or other forms of com-
munication. In other teaching systems, pupils work in
groups and teachers move from group to group. There
might even be combinations of these teaching methods
or di�erent innovative methods.

We also split the students into their separate classes.
Whilst this results in the discarding of approximately
20% of the originally recorded links, this has given us
more samples to analyse; moreover, it allows for a sta-
tistical comparison between the dynamics of di�erent
classes. From a more practical perspective, this restric-
tion to classes has a considerable impact on the runtime
of the model simulations (reducing this size from around
500 students to around 25).

The choice to restrict to classes is also justi�ed from
a modelling perspective as it is realistic to assume (at
least as an initial hypothesis) that contacts outside of
the classroom (during break/lunch) would follow sub-
stantially di�erent behaviour.

We also split the data into individual days � simi-
larly to splitting by class, this helped to reduce the run-
time of the simulation as well as to increase the num-

ber of samples we could analyse. Again, this is not
unrealistic, as the interactions between students in the
same class can reasonably be assumed to be similar
from one day to another.

2.1. Analysis of original data

A series of MATLAB functions were written to take
these (separated) CSV �les and perform an analysis of a
variety of network and temporal features, and attempt to
do best-�t analysis on all appropriate results � a full list
of these features below. Animations showing the network
evolution over time were also produced. For a listing of
the code and short descriptions of the functions written
to carry out this analysis, please see the handbook pro-
vided in the supplemental materials.
We identi�ed a variety of key features for analysis. As

usual, many more features can be observed from the data,
and indeed, in order to approximate a completely realis-
tic model, many of these should be analysed and incorpo-
rated into more detailed models. Our models are just an
initial step into understanding these socially-interaction
temporal networks, and we are only focusing on aspects
that categorise and describe both the topology of the
network and several temporal properties of the system.
These features are presented below, along with brief def-
initions of these terms:
Active Nodes: The measure of active nodes at a given
time t is de�ned as the number of pupils involved in at
least one interaction at time t, as a fraction of all pupils
active during that day.
Active Links: The measure of active links at a given time
t is de�ned as the number of unique (undirected) pupil-
pupil interactions at time t, as a fraction of all possible
links for that day, equal to `max = N(N − 1)/2, where
N is the number of pupils active during that day in the
class under consideration.
Node and Link Activity Potential: The activity potential
of a node is de�ned as the number of activations involv-
ing that node, as a fraction of all node activations across
the day [20]. We also de�ne an analogue for links, de�ned
as the number of activations of that link, as a fraction of
all link activations across the day.
Global Clustering Coe�cient: The global clustering coef-
�cient at a given time t is de�ned as the ratio between the
number of closed triplets and the number of connected
triplets in the network [4]. That is, the ratio between the
number of triangles in the network and the number paths
of length 2, that do not have a third edge connecting the
end points.
Node Degree: The degree of node n is the number of ac-
tive links involving it [21].
Component Features: De�ning a component as a maxi-
mal subset of nodes that are fully connected [22], we can
also examine properties such as component count and
nodes and links per component at a given time t.
Activation Time: For each link, an activation time is
measured � de�ned as the period of time it takes for
that speci�c link to be activated for the �rst time.
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On-Duration: For each link, on-durations are measured
� de�ned as the period of time between the activation
and deactivation of that link.
O�-Duration: For each link, o�-durations are measured
� de�ned as the period of time between the deactivation
and reactivation of that link.

2.2. Properties identi�ed from original data

In the initial part of this article we use the observed
data to �t all of the above quantities to certain distri-
butions. These will act as a stepping stone to the sec-
ond part of this article, in which we develop theoretical
models, in an attempt to recreate the observations using
Monte Carlo simulations.
As we do not have any explicit theories for the dynam-

ics of any of our chosen properties, we shall test against
a series of appropriate common probability distributions
([23], p. 899) and variations on these, representing a
range of behaviours de�ned on the semi-in�nite interval
[0,∞). We will be using exponential, gamma, Rayleigh,
log-normal, the Mittag�Le�er, generalised Pareto and
Weibull distributions. All of these will have best �t
parameters chosen using by three di�erent methods �
method of moments [24], maximum likelihood estima-
tors [25], and the curve �tting tool in MATLAB (non-
linear least squares) � and then compared to the em-
pirical complementary cumulative distribution functions
(eCCDFs) of the original data to determine which one is
most optimal.
This comparison was achieved by looking at a variety

of statistical distances � the Kolmogorov-D, Cramer�
von-Mises, Kuiper, Watson, Anderson�Darling and mod-
i�ed versions of the Kullback�Leibler and Jensen�
Shannon [26]. These distances and comparisons were
chosen as they emphasise a wide varying range of prop-
erties of the distributions to be compared � with, for
example, some being more sensitive to changes in the
head and tail of the eCCDF, whilst others are more sen-
sitive to changes in the middle. Finding a distribution
that had �good� values for all of these distances would
indicate that it was a good �t across the entirety of the
compared eCCDF.
In over 75% of cases, the curve �tting tool in MAT-

LAB produced the statistically best parameters, with the
parameters chosen using this method in the majority of
the remaining cases being only slightly di�erent to those
produced using a more optimal method. As a result of
this, and additionally considering that the method of mo-
ments and least likelihood estimation do not work with
all of our chosen distributions, we shall conduct any addi-
tional analysis using only the curve �tting tool, and only
results produced using this method will be presented and
used throughout this paper.

2.2.1. Results from data
Below we present a summary of the distributions cho-

sen using the method described above. Best-�t pa-
rameters and comparative distances have been excluded
for brevity.

Active Links: The optimal tested distribution for the pri-
mary school data was log-normal, whilst for the high
school data, both the Rayleigh and log-normal distri-
butions gave similar �ts, with log-normal being slightly
more optimal.
Active Nodes: The optimal tested distribution for the pri-
mary school data was gamma, whilst for the high school
data, the gamma and log-normal distributions both gave
similar �ts, with log-normal being more optimal in all
but the most extreme values.
Node Activity Potential: In both data sets, gamma and
log-normal distributions gave similar �ts, with gamma
being fractionally better.
Links per Component: For the primary school data,
gamma and log-normal distributions both gave simi-
lar �ts, with log-normal being marginally more opti-
mal. Whilst for the high school data, gamma, log-normal
and Rayleigh distributions all gave similar �ts, with log-
normal being slightly better.
Nodes per Component: For the primary school data,
gamma, log-normal and Rayleigh distributions all gave
similar �ts, with log-normal being slightly better.
Whilst for the high school data, gamma and log-
normal distributions both gave similar �ts, with no clear
optimal distribution.
Global Clustering Coe�cient: In both data sets, gamma,
log-normal and Rayleigh distributions all gave similar
�ts. For the primary school data there was no clear opti-
mal distribution between these, whilst for the high school
data, a gamma distribution was slightly better.
Interaction Times/On-Times: In both data sets, the op-
timal tested distribution was generalised Pareto.
Number of Components: In both data sets, the optimal
tested distribution was gamma.
Time Between Contacts/O� Times: In both data sets,
the best tested distribution was log-normal.

2.2.2. Link inhomogeneity

Not surprisingly, the o�-durations of links (recalling
that links are o� if participants are not in contact with
each other) cannot be assumed to be homogeneous across
students. This is in accordance with the realistic assump-
tion that certain children are more popular or sociable
than others. A further later of statistical �tting deter-
mined that for attempting to recreate the primary school
data, it was optimal to have the o�-durations vary link-
by-link. The optimal choice for this was an exponen-
tial distribution with log-normal parameters. We ad-
ditionally examined the triangle count within the net-
work, as well as inter-event times (the time between
two consecutive link activations in the network). For
the �rst, a gamma distribution was the optimal �t-
ted distribution, whilst for the second, a log-normal
distribution was selected.

These two features were chosen to be added to
the list of those analysed as the triangle count o�ers
an additional measurement of the nature of the net-
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work structure alongside the global clustering coe�cient,
whilst the inter-event times were necessary for building
our second model.

2.2.3. Comparing samples
When we create our models, we aim to have little

dependence on the original data � varying parameters
only between di�ering settings (primary school vs. high
school), rather than within these settings. For example,
we would aim to have the parameters for the random
variable generation for the model for class 5A in the pri-
mary school to be the same as those in the model for
class 1B of the primary school. Therefore, our �rst sta-
tistical test will be to test the validity of this statement.
Our H0 is

H0 : The two observed samples come from

a common distribution.

(1)

We compute two-sample Kolmogorov�Smirnov dis-
tances [27, 28] between each of our data sets
within each setting.
We present the number of acceptances of this hypoth-

esis (out of 190) for our primary school data samples at
the 1 and 5 percent levels in Table I. Examining these
results, we conclude that while we do not have a unani-
mous degree of acceptances for H0, we have a substantial
number in some metrics and a notable level in others.
Other metrics have a very low degree of matching �
most noticeably in terms of active links and interaction
times. Whilst this is not ideal for our aim to only vary
parameters between scenarios, for brevity we shall still
proceed under this assumption � although it should be
noted that when we present our models we do not ac-
tually �x the parameter in the distribution for our in-
teraction times. Instead we draw this parameter from a
random distribution itself, which re�ects this behaviour
in the data originally collected by the SocioPatterns Col-
laboration.

TABLE I

Acceptances of H0 (see Eq. (1)) at 1% and 5% levels
(maximally 190) (see Sect. 2.2.3 for full explanation)

Parameter 1% 5%

Active Links 10 3

Active Nodes 139 125

Node Activity Potential 190 185

Global Clustering Coe�cient 67 46

Interaction Time 9 4

Time Between Contacts 30 19

Component Count 113 94

Links per Component 62 50

Nodes per Component 63 54

Triangle Count 114 99

3. Model creation

The aim of our model is to recreate the dynamics seen
in the original data with as few properties and param-

eters taken from the original data as possible. In more
precise terms, we wish to test if the mechanism of inter-
actions within the original data can be explained by a
small number of key factors and identify and re�ne those
parameters. As with any model, we doubt that we will
be able to replicate every property in the original data,
but it is important to examine the di�erences between
our model and the original data, and to put a measure-
ment on the distance between the two. Whilst there will
be some properties that we will be controlling, there will
be several network and temporal properties that emerge
from our model that we can compare to our original data,
hence giving us a measure of the distance between the
two. For the sake of brevity, we will only present the
results and parameter values for primary school data be-
low. Analysis supporting our choice of distributions and
parameters is provided in the supplemental materials.

3.1. Model 1

For this stage-0 model we look at each (potential) link
individually and model its behaviour as an alternating
renewal process (ARP). We also include an initialization
phase for each link that models the time (in seconds)
until the �rst activation of that link. This can be seen as
the following process for each link where Xij,n represents
duration of the n-th on (or o�) phase for the link (i, j),
with the distributions chosen using an empirical analysis
of the data. Algorithmically, we present this as:

1. Initialization Phase: Generate the initialisation
time for this link with

XInit

ij ∼ exp(6278.0),

2. ARP On-Phase: Assign the link the on-duration

XOn

ij,n ∼ exp (Yij) ,

with parameter �xed for each (i, j) to

Yij ∼ LogNormal(3.5348, 0.2807).

3. ARP O�-Phase: Assign the link the o�-duration as

XO�

ij,n ∼ LogNormal(6.3512, 1.3688).

4. Repeating Process: Repeat stages 2 and 3 until the
total time has reached or exceeded the simulation
time.

3.2. Model 2a

In this stage-0 model, we will be dealing with the sys-
tem on a macroscopic basis. We are drawing times be-
tween activations from an appropriate distribution, then
at each of these activations, a link is chosen at random
from a custom distribution constructed from the link ac-
tivity potentials (as de�ned in Sect. 2.2) extracted from
the data and represented by a symmetric weighting ma-
trixM . If the chosen link is already active in the network,
this selection is discarded, and another link is chosen for
that activation time. Once a link has been activated,
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it is given a lifespan from an appropriate distribution.
This can be seen as the following process, with the dis-
tributions chosen using an empirical analysis of the data.
Algorithmically, we present this as:

1. Time between Activations: Generate

ti ∼ LogNormal(5.6901× 10−4, 1.7957).

2. Link Activation: At each activation time Tk,
de�ned as

Tk =

k∑
i=0

ti,

a link (n1, n2) is chosen using the relative weights
in the matrix M . If (n1, n2) is already active at
time Tk, choose another link for this time (n′1, n

′
2).

3. Assign On-Durations: This link is given the
duration

Xk
n1n2

∼ exp(Yn1n2
),

as before with parameter �xed for each (n1, n2) to

Yn1n2
∼ LogNormal(3.5348, 0.2807).

3.3. Model 2b

In this model, we modify our Model 2a and attempt
to improve triangle count and clustering. Most of the
method is similar to the earlier model, but we force cho-
sen links to close a pair of links into a triangle at a �xed
rate, reweighting our selection matrix to only account
for these links (if no such links exist, we use the original
selection matrix), before proceeding as before with this
link selected. This can be seen as the following algorithm,
with the distributions always chosen using an empirical
analysis of the data:

1. Time between Activations: Generate

ti ∼ LogNormal(5.6901× 10−04, 1.7957).

2. Triangulation Bias: Generate a random number u
such that

u ∼ Unif[0, 1].

If u ≥ 0.0640 (our �forcing� rate, calculated from
the data), proceed to stage 3a, else proceed to
stage 3b.

3. Link Activation:

(a) Standard Activation: At each activation time
Tk, de�ned as

Tk =

k∑
i=0

ti,

a link (n1, n2) is chosen using the relative
weights in the matrixM . If (n1, n2) is already
active at time Tk, choose another link for this
time (n′1, n

′
2). Proceed to stage 4.

(b) Triangle-Biased Activation:

i. Matrix Reweighting: Generate the (sym-
metric logical) matrix C of links that will
complete triangles. If this matrix is 0, set
C = I. Create the adjusted weighted ma-
trix M ′ where M ′ij = CijMij .

ii. Link Activation: At each activation time
Tk, de�ned as

Tk =

k∑
i=0

ti,

a link (n1, n2) is chosen using the relative
weights in the adjusted matrix M ′. If
(n1, n2) is already active at time Tk,
choose another link for this time (n′1, n

′
2).

Proceed to stage 4.

4. Assign On-Durations: This link is given the
duration

Xk
n1n2

∼ Exp(Yn1n2
)

as usual with parameter �xed for each (n1, n2) to

Yn1n2
∼ LogNormal(3.5348, 0.2807).

3.4. Model 2c

We shall again build upon our previous model � model
2b � this time changing our matrix M . Previously, this
has been a �xed matrix extracted from the data, but we
wish to move to a randomly generated one to reduce this
strict dependence on the original data. Analysing these
(symmetric) matrices, we examine the row (or column)
sums, which we attempt to �nd a distribution for. From
an analysis of the data, we choose an appropriate distri-
bution for these sums � we shall use row sums

MiΣ =

n∑
j=1

Mij ∼ Γ (12.3109, 0.0037).

For our �rst attempt at generating an appropriate ran-
dom matrix M , we shall assume that each term is taken
from a gamma distribution with

Mij ∼ Γ (µA
i , 0.0037) + Γ (µB

j , 0.0037)

for i < j, Mij = 0 for i = j and Mij = Mji for i > j.
This distribution is chosen in a simple yet natural way
that ensures correlations across rows and columns. We
also construct this in such a way that the choice of a self-
loop is impossible, whilst also ensuring symmetry (which
is to be expected as our network is undirected). Due to
the additive properties of the gamma distribution, this is
equivalent to the distribution

Mij ∼ Γ (µA
i + µB

j , 0.0037)

for i < j, Mij = 0 for i = j and Mij =Mji for i > j.
We can use the properties of the gamma distribution

to specify the parameters µA
i and µB

j as follows. As
this matrix has to be symmetric, we modify those en-
tries below the diagonal accordingly. To sum across a
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row, we �rst add the entries to the right of the diagonal,
which is equal to

(n− i)µA
i +

n∑
j=i+1

µB
j .

We then notice that the entries to the left of the diago-
nal, are equal to the column sum to the diagonal, equal
to

(i− 1)µB
i +

i−1∑
j=1

µA
j ,

giving to total sum to be

(n− i)µA
i +

n∑
j=i+1

µB
j + (i− 1)µB

i +

i−1∑
j=1

µA
j .

To match the distributions for the row sums, we require
that:

(n− 1)µA
1 +

n∑
j=2

µB
j = (n− 2)µA

2 +

n∑
j=3

µB
j + µB

2 + µA
1

= (n− 3)µA
3 +

n∑
j=4

µB
j + 2µB

3 +

2∑
j=1

µA
j = . . .

= µA
n−1 + µB

n + (n− 2)µB
n−1 +

n−2∑
j=1

µA
j

= (n− 1)µB
n +

n−1∑
j=1

µA
j = 12.3109

The trivial solution to this is µA
i = µB

j = µ?∀i, j ∈
{1, 2, . . . , n}, giving µ? = 12.3109/2(n − 1). Our initial
model for a randomly generated symmetric M shall be
with

Mij ∼ Γ

(
12.3109

2(n− 1)
, 0.0037

)
for i < j, Mij = 0 for i = j and Mij = Mji for i > j.
Whilst the use of this trivial solution is somewhat sim-
plistic, we believe that the inclusion of this method is an
important step as it allows us to examine behaviours and
test mechanics before examining non-trivial solutions in
future work.

3.5. Summary

In Table II we present a concise comparative summary
of the data dependences of each of our 4 model variants.
For most of our models, we feel as though the parameter
count is acceptable considering the complexities of the
behaviours we are attempting to capture. In model 2b,
the parameter count is much higher than reasonable due
to the explicit dependence on the original data, suggest-
ing that this would not be an ideal model to fully imple-
ment � however it is included in our analysis in order to
allow us to observe the accuracy of model 2c.

TABLE II

Summary of model dependences (see Sect. 3.5 for full explanation and Sect. 3.3 for the de�nitions of uf and M)

Model Parameters Parameter values Parameter count

model 1

XInit
ij ∼ exp(λ) λ = 6278.0

5Yij ∼ LogNormal(µ1, σ
2
1) (µ1, σ

2
1) = (3.5348, 0.2807)

XO�
ij,n ∼ LogNormal(µ2, σ

2
2) (µ2, σ

2
2) = (6.3512, 1.3688)

model 2a
ti ∼ LogNormal(µ1, σ

2
1) (µ1, σ

2
1) = (5.6901× 10−4, 1.7957)

4
Yn1n2 ∼ LogNormal(µ2, σ

2
2) (µ2, σ

2
2) = (3.5348, 0.2807)

model 2b

ti ∼ LogNormal(µ1, σ
2
1) (µ1, σ

2
1) = (5.6901× 10−4, 1.7957)

5 + n(n−1)
2

Yn1n2 ∼ LogNormal(µ2, σ
2
2) (µ2, σ

2
2) = (3.5348, 0.2807)

u ≥ uf (our `forcing' rate) uf = 0.0640

M n× n symmetric matrix

model 2c

ti ∼ LogNormal(µ1, σ
2
1) (µ1, σ

2
1) = (5.6901× 10−4, 1.7957)

7
Yn1n2 ∼ LogNormal(µ2, σ

2
2) (µ2, σ

2
2) = (3.5348, 0.2807)

u ≥ uf (our `forcing' rate) uf = 0.0640

Mij ∼ Γ (k, θ) (k, θ) =
(

12.3109
2(n−1)

, 0.0037
)

4. Model analysis

Please note, in the �gures highlighting key results, sim-
ulated data is represented by crosses whereas observed
data is represented by dotted lines, with the data dis-
played as an eCCDF with log-log axes (with scaling pre-
served between models). Each colour represents a dif-
ferent simulation or data set. In order, the four eC-
CDFs shown represent active nodes, node activity poten-
tials, component counts, and the global clustering coe�-

cients. We choose these metrics to illustrate as they rep-
resent both promising behaviours and less-optimal ones,
thereby giving a representative snapshot of our results.
Additionally, these eCCDFs are some of the clearer and
easier ones to read, allowing us to demonstrate a number
of behaviours in a brief and compact manner. It should
be noted that in some cases (most apparent in the case
of the global clustering coe�cients) that some of these
eCCDFs appear not to start at 1 as expected � this is a
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result of a high prevalence of the value 0 in our data, with
a large jump between this and other values. For readabil-
ity, this jump has been excluded from the graphics, with
our images only showing the section of the graph where
the majority of our values fall.
We also present comparative data in two ta-

bles. In Table III, we show a summary of the
two-sample Kolmogorov�Smirnov distances [27, 28]
between our collection of 20 empirical samples
and 20 simulated data samples from each of the 4 mod-
els presented above � showing the minimum, maximum,
mean, and mode of the distance between any of the 20

sets of real world data and any of the 20 sets of generated
data. We also compare horizontally, comparing each em-
pirical data set against 50 data sets generated using our
chosen metrics. We test the hypothesis H0, in this case,
this is

H0 : The chosen empirical and generated

data samples come from a common distribution.

(2)

In Table IV, we present the total number of acceptances
(out of a possible 1000) at the 5%-level of this hypothesis
when tested on a particular metric.

TABLE III

Selected two-sample Kolmogorov�Smirnov distances (see Sect. 4 for full explanation)

Model

Node

Activity

Potential

Global

Clustering

Coe�cient

Component

Count

Links per

Component

Nodes per

Component

Triangle

Count

Model 1

min 0.1304 0.02517 0.01813 0.009406 0.006316 0.02394

max 0.5769 0.2876 0.6083 0.07935 0.07935 0.2876

mean 0.3365 0.1191 0.2895 0.03934 0.03856 0.1189

mode 0.3043 0.03524 0.01813 0.009406 0.006316 0.03524

Model 2a

min 0.08696 0.01835 0.03448 0.004412 0.00467 0.002869

max 0.4249 0.2677 0.6067 0.09015 0.09015 0.2641

mean 0.2212 0.09876 0.308 0.04169 0.04195 0.06908

mode 0.1739 0.01835 0.03448 0.004412 0.00467 0.002869

Model 2b

min 0.08 0.02513 0.03112 0.004466 0.003064 0.005029

max 0.4377 0.2065 0.5274 0.08203 0.08203 0.2011

mean 0.2241 0.08137 0.2838 0.0373 0.03754 0.05605

mode 0.2273 0.06793 0.03112 0.004466 0.003064 0.005029

Model 2c

min 0.08696 0.03049 0.03836 0.005304 0.006754 0.003863

max 0.4945 0.2036 0.552 0.08004 0.08004 0.1842

mean 0.2485 0.07893 0.3087 0.04149 0.04166 0.04898

mode 0.2273 0.07942 0.03836 0.005304 0.006754 0.006151

Additionally, we present Fig. 1 to highlight long-term
behaviours in our model. In this �gure, the transparency
of each link represents its relative activity in comparison
to other links, and the size of each node represents the
relative activity of each node. The 5 images in this �g-
ure represent this behaviour at t = 15000 seconds for
an example of the original data, model 1, model 2a,
model 2b and model 2c. Using this �gure, we can see
systemic behaviours, such as possible grouping of nodes
into friendship groups or similar metrics that would be
more di�cult to measure empirically. This also gives us
an intrinsic de�nition for link spread. Figure 1b demon-
strates a poor spread � the long-term behaviour is rel-
atively homogeneous with fewer darker links. Similarly,
a simulation that resulted in long-term behaviour that
only had darker links limited to a very small number
of nodes would also su�er from poor spread. Compar-
atively, Fig. 1a has a better edge spread � there are
a higher number of darker links spread among a larger
number of nodes. More precisely, this is measuring a
combination of factors � including activity potentials,

component structures and other network features � but
allows us to get an impression of many of these features
at a glance. We do not expect a perfect matching be-
tween the examples here due to the randomness of the
data, but are instead looking for system-wide similarity
in behaviour. Di�erences are expected in the placement
of stronger links and nodes (and indeed, do occur between
simulation runs). However, we would expect a well-�tting
model to exhibit similar numbers to those in the original
data and with a similar relationship between them (for
example, as Fig. 1a has many nodes being involved in at
least one stronger link, a well-�tting model would not be
expected to have all of its strong links emanating from a
common node).

4.1. Model 1

Looking at Fig. 2, the appropriate sections of Tables III
and IV and other comparative and graphical results not
directly presented in this paper for brevity, as a �rst at-
tempt at creating a model, we see promising results. The
model produces acceptable �ts for several of the exam-
ined features. Active links, active nodes and on-durations
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TABLE IV

Acceptances of H0 (see Eq. (2)) at 5% level (maximum
1000) (see Sect. 4 for full explanation)

Parameter
Model

1

Model

2a

Model

2b

Model

2c

Active Links 1 0 1 0

Active Nodes 0 0 0 0

Node Activity Potential 954 1000 1000 999

Global Clustering Coe�cient 0 0 0 0

Interaction Time 6 0 0 0

Time between Contacts 24 2 2 2

Component Count 151 264 240 306

Links per Component 62 35 56 42

Nodes per Component 33 68 79 63

Triangle Count 152 503 637 637

Fig. 1. Long term behaviours for original data and
models � size of nodes and transparency of links repre-
sent relative activities (see last paragraph of the opening
of Sect. 4 for full explanation and the relevant subsec-
tions of Sect. 4 and Sect. V for an analysis of these
results). One immediate observation is that model 1
homogenises much faster � note the limited number of
darker links. (a) Original data, (b) model 1, (c) model
2a, (d) model 2b, (e) model 2c.

all produce graphically acceptable results, although us-
ing our Kolmogorov�Smirnov acceptances (shown in Ta-
ble IV), there are improvements to be made in terms of
these �ts. For o�-durations, when we compare our eC-
CDFs, we observe a reasonable �t in certain areas of the
distribution although this �t deteriorates for extreme val-
ues and once again we notice that our acceptances indi-
cate that the current construction of this model requires
re�nement to fully capture this behaviour. For our global
clustering coe�cient (presented in Fig. 2) and triangle
count, we have poor �ts where comparing the data sets
graphically, although we are getting a small number of
acceptances with our two-sample Kolmogorov�Smirnov
tests � likely as a result of an extreme prevalence of cer-
tain values in these data sets. For nodes per component,
links per component and the component count (partially

presented in Fig. 2), we observe acceptable �ts graphi-
cally and are indeed accepting a small number of these
�ts when calculating our statistical distances, as shown
in Table IV. This also indicates that slight re�nement to
this �t may be possible. For node activity potential, we
have a good �t, both graphically and when considering
our number of the Kolmogorov�Smirnov acceptances.

Fig. 2. Selected results for model 1. Simulated data is
represented by crosses whereas observed data is repre-
sented by dotted lines. Each colour represents a di�er-
ent simulation or data set. See Sect. 4.1 for full expla-
nation.

It is evident that this model does have noticeable di�er-
ences to the observed data. We have a substantial num-
ber of small linear components in our model, which is im-
pacting many of the features described above. Addition-
ally there are problems with link selection spread (de�ned
in Sect. 4) as can be seen when comparing the original be-
haviour displayed in Fig. 1a with that in Fig. 1b, resulting
in very few popular links (re�ecting strong friendships),
which could also explain di�erences within the node ac-
tivity potentials at the tail of our CCDFs.

4.2. Model 2a

Considering Fig. 3, the appropriate sections of Ta-
bles III and IV and other results measured, we see a
substantially improved model. As with model 1, we have
results that appear graphically similar across the entirety
or keys sections of the distribution for active links, active
nodes, global clustering coe�cient, on-durations and o�-
durations, whilst our Kolmogorov�Smirnov distances for
these indicate that there are still improvements to the
�ts to be made here. For our triangle count, we are see-
ing reasonable �ts graphically and are accepting a higher
number of our statistical comparisons. Again, for nodes
per component, links per component and the component
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count, we observe acceptable �ts graphically (partially
presented in Fig. 3) and are indeed accepting a small
number of these �ts when calculating our statistical dis-
tances � overall a slightly higher number than in model
1, but with only small variations in each one. For node
activity potential, we have a very good �t, both graphi-
cally and when considering the Kolmogorov�Smirnov dis-
tances. As can be seen when we compare Fig. 1a and
Fig. 1c, we are also producing an acceptable link selec-
tion spread (de�ned in Sect. IV), which re�ects the vary-
ing levels of friendships observed in the real world data.

Fig. 3. Selected results for model 2a. Simulated data
is represented by crosses whereas observed data is rep-
resented by dotted lines. Each colour represents a dif-
ferent simulation or data set. See Sect. 4.2 for full ex-
planation.

However, this model is insu�cient to capture the re-
lated component structure � with our generated data
still having too many linear components in comparison
to triangles. Although attempting to resolve this will in-
crease our dependence on the data, it is believed to be
signi�cant enough to warrant this.

4.3. Model 2b

In Fig. 4, the relevant sections of our tables and other
results measured, we see similar results to model 2a.
Again, we have �ts that have various levels of visual sim-
ilarity to the observed data for active links, active nodes,
on-durations and o�-durations, whilst our Kolmogorov�
Smirnov distances as reported in Tables III and IV, for
these indicate that there are issues with these. With our
global clustering coe�cient have reasonable �ts graphi-
cally, but similar to model 2a are still having issues with
the Kolmogorov�Smirnov acceptances. Again, for nodes

per component, links per component and the component
count, we observe acceptable �ts graphically (partially
presented in Fig. 4) and note in Table IV a slight increase
or similar levels in count of acceptances. We have a simi-
lar result for the node activity potential, with a very good
graphic �t and a very high number of the Kolmogorov�
Smirnov acceptances. For the triangle count in the net-
work, we observe good �ts graphically and in terms of
our statistical tests, with a substantial improvement over
the results obtained in model 2a. We also observe vary-
ing levels of popularity in the links, re�ecting the var-
ious levels of friendships that can be seen in the orig-
inal data � as can be seen in comparing behaviours
in Fig. 1a and Fig. 1c.

Fig. 4. Selected results for model 2b. Simulated data
is represented by crosses whereas observed data is rep-
resented by dotted lines. Each colour represents a dif-
ferent simulation or data set. See Sect. 4.2 for full ex-
planation.

4.4. Model 2c

In most metrics, this model performs similarly to
model 2b, with little to no di�erence in all of our ex-
amined metrics. Whilst, as illustrated in Table IV, some
see a slight drop in the number of acceptances of the
null hypothesis for the two-sample Kolmogorov�Smirnov
test, others see a slight increase and overall we see a
very marginal increase in the total count. Overall be-
haviours and link selection weighting re�ect the observed
data with a reasonable degree of accuracy as can be seen
in Fig. 5 and a comparison between Fig. 1a and 1c.

5. Model comparison

Overall, there is a considerable improvement across
most metrics between model 1 and model 2a. This can
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Fig. 5. Selected results for model 2c. Simulated data
is represented by crosses whereas observed data is rep-
resented by dotted lines. Each colour represents a dif-
ferent simulation or data set. See Sect. 4.4 for full ex-
planation.

be seen empirically when we examine the statistical dis-
tances between the observed data and our generated sim-
ulations and the count of 5% acceptances (as illustrated
in Tables III and IV). Signi�cant improvements are made
to the node activity potential and triangle count, in-
cluding a noticeable graphical improvement to the global
clustering coe�cient, as can been seen in Figs. 2 and 3.
Whilst modi�cations could be made to model 1 to im-
prove its accuracy in some of these areas (such as includ-
ing the link selection preference matrix), due to its im-
proved performance with similar levels of dependence on
the data, the second model will be the basis for all future
work. We also notice a substantial drop in link selection
spread (de�ned in Sect. 4) as we move between these
models, with model 2a re�ecting real world behaviours
much closer in our observations, as displayed in Fig. 1.
Between model 2a and model 2b, many metrics remain

similar, although as expected from our modi�cations to
the algorithm, we do notice a considerable improvement
to the triangle count, illustrated in both Table IV and
when observing the decrease in the maximum and mean
statistical distance for this metric in Table III. However,
one of the larger problems with model 2b is that the link
selection preference matrix depends heavily on the orig-
inal data, and we note that we could reduce this data
draw considerably by generating this matrix rather than
extracting it directly from the data. Model 2c attempts
to do this, and can be considered successful as we can
observe in Tables III and IV, although a deeper exami-
nation of the temporal and network properties indicates
that further improvements are still to be made.

6. Model validation

As indicated in Table I, our approach to using the same
distributions through all of our primary school models is
not ideal. Therefore, we shall examine our methods in
such a way to examine if the dynamics used in our mod-
els is a valid choice. To do this we shall draw temporal
data directly from the appropriate eCCDFs � for model
1, these are the on-, o�- and activation times, whilst for
model 2, these are the on-times and interevent times. We
shall then compare the data generated using this method
to the real world sample that we draw the eCCDFs from
� if we have a low statistical distance between these, we
can conclude that our model dynamics have validity and
that any issues identi�ed in the examination above can
be signi�cantly addressed through parameter improve-
ments and re�nements to the choice of distributions for
our random values.
In Table V, we present the results of our validation.

We take each of our 20 original data samples and input
the appropriate eCCDFs in the place of the random gen-
eration outlined in methods 1, 2a and 2b as described in
Sect. 3. We do not analyse method 2c using this method
of validation as if we were to draw the link preferential
matrix in this method from the data, this would be func-
tionally identical to model 2b.

TABLE V

Validation acceptances of H0 (see Eq. (3)) at 5% level
(maximum 1000) (see Sect. 6 for full explanation)

Parameter Model 1 Model 2a Model 2b

Active Links 0 2 0

Active Nodes 56 389 362

Node Activity Potential 881 1000 1000

Global Clustering Coe�cient 0 0 0

Time between Contacts − 2 2

Component Count 0 211 364

Links per Component 0 43 45

Nodes per Component 0 42 48

Triangle Count 0 367 771

We then generate 50 samples for each and compare
them to the original data (for a total of 1000 comparisons
for each metric and model). Please note that interaction
times for all models (and the time between contacts for
model 1) have been excluded from this table as they
are being controlled directly from the data and thus, a
validation using this metric would serve no purpose. In
this table our H0 is given as

H0 : The chosen observed and validation

samples come from a common distribution.

(3)

Using this data, we can clearly see that our variations
of model 2 have considerably improved dynamics over
model 1, although we can still see that there are still im-
provements to be made. When we compare Tables IV
and V, we observe whilst choosing the �right� time struc-
tures does lead to some improvements � most notably
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in terms of active nodes � it is not enough to ensure a �t
across all chosen metrics, and therefore that changes to
our overall dynamics should be considered. From our
examination of these results, we conclude that e�orts
should be made to improve link dynamics and hypoth-
esise that by modifying our code to change the number
of links generated in the network should improve our dy-
namics � especially for active nodes, although we would
expect to also see improvements in our global clustering
coe�cient, component features and active nodes. This
should also improve our time between contacts as chang-
ing the number of link activations will have a direct im-
pact on this metric.
However, despite these small improvements still to be

made to our model, we conclude that our model 2b (and
therefore 2c) have justi�able dynamics and that an im-
provement to the random generations will lead to an im-
proved model overall.

7. Conclusions

We have developed two forms of model for the social
interactions observed in the original data collected by
the SocioPatterns collaboration [17�19]. In terms of sta-
tistical distance, both of these exhibit varying degrees of
matching with the original data � the second of our mod-
els out-performing the �rst in almost all of our chosen
metrics. We have added re�nements to this, improving
upon this matching, whilst continuing to minimise the
amount of dependence on the underlying data. We also
have run a form of model validation and can certainly
acknowledge that our model dynamics have a notable
degree of validity in a number of key metrics when com-
pared to the real word data � whilst this indicates that
we do have additional improvements to the mechanisms
in our models to perform, we believe that our current
models are a promising step in a strong direct. We also
acknowledge that further re�nement for the parameters
and distributions used may lead to improved matching,
although we believe the models presented here provide a
solid foundation from which to proceed.

8. Future work

Improvements to the method for generating our ma-
trix in model 2c will have to be undertaken before this
algorithm is �nalised. Additionally, further parame-
ter and distribution re�nement in our method will also
be explored, including potentially moving from a log-
normal distribution for the interevent times to a more
complicated method in order to improve the match-
ing between the generated time between contacts and
that in the real world data. We will also attempt to
make modi�cations as proposed in our model validation
in Sect. 6, although these improvements are only hy-
pothesised to improve model dynamics. Once we have
completed our model for primary school data, we shall
move to the high school data by using the same method
and adjusting parameters.

We will also carry out a deeper theoretical analysis of
our model and examine any interesting patterns or be-
haviours within it, looking at long-term behaviours and,
through simulation, the potential existence of any ab-
sorbing states. Additionally, once we have a �nalised
model and thus a statistically rigorous understanding of
the distributions behind the observed behaviours, we can
propose theoretical reasoning for these choices by exam-
ining the signi�cance and underlying mechanisms of such
distributions.
Eventually, we aim to place a network-driven epidemic

model on our time-varying network and examine prop-
erties of disease spread and potential predictive power,
comparing both to existing models and real data.

9. Notes

Supplemental materials can be found at the follow-
ing link: https://drive.google.com/drive/folders/
1nLpdt91XUNElF1es2x3sm6qemqkQGrGf?usp=sharing
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