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1. Introduction

This paper attempts to describe the behavior of �nan-
cial markets as a set of functions in terms of price return
and time variables based on the net di�erence between
ask and bid volumes over a unit period, thereby suggest-
ing that at least a negative price return extreme exists
for a unit period.
Yet, merely demonstrating that extreme values exist is

not enough. In the context of �nancial markets, the ex-
treme measure that investors and market risk managers
care about most is usually a negative price return. If the
extreme negative price return � measured as a percent
decrease over a de�ned period � is simply unity (i.e.,
a complete market collapse to zero), then the suggestion
that negative price return extremes exist becomes trivial.
This paper introduces a heuristic method to determine
whether negative price returns over a de�ned period are
constrained by extremes that are non-trivial.
There are three reasons to focus on price return re-

ductions instead of increases. The �rst is the reason just
mentioned; it is the focus of most market risk managers.
The second is that price return increases are theoreti-
cally in�nite while decreases are limited to the displace-
ment between the current price and zero. The third is
extant empirical work. Others observe that the cumu-
lative probability distribution of price returns takes the
approximate power law form x−α, where α is an appro-
priate parameter for the market and sampling frequency.
This empirical work shows that the power law form holds
for di�erent �nancial markets across di�erent sizes and
for di�erent periods [1�3]. Placing an upper limit on price
returns would mean that this observed power law form
could never be satis�ed.� Although this paper uses an
extreme price return increase variable as part of its math-
ematical formalism, it is careful to only claim a method
for approximating price return reductions.
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Further, this method is only potentially useful for mar-
kets that are robust and actively traded, and where the
mean value of the price return is close to zero. This last
requirement implies a form of mean reversion, which re-
mains controversial in the literature [4, 5].
Lastly, this heuristic is based on a uniformitarian-like

assumption that, to some extent, historical data can be
used to predict extreme price returns. There is signi�cant
disagreement in the literature over whether this postulate
holds [8�11]. Consequently, this underlying assumption
might be a signi�cant limitation of the method.
This paper does not use a statistical approach in sug-

gesting that at least extreme negative price returns exist.
Instead, it focuses on simple mechanics. The paper does
employ some basic probability methods in the third sec-
tion, but these are transitional in arriving at proposition
of non-triviality. The paper's conclusion o�ers an ap-
proximation of the magnitude of a negative price return
extreme. In this way, the paper might make some sub-
stantive contribution to the literature and market risk
management [12�16].
The paper is divided into �ve sections. The �rst is this

brief introduction. The second de�nes a �nancial mar-
ket as a system dependent entirely upon the interactions
of generalized buyers and sellers and then o�ers an in-
ductive argument that suggests the existence of negative
price return extremes. The third section o�ers a way
to approximate these negative price return extremes to
determine if they are non-trivial. The fourth discusses
limitations of the heuristic and presents an application.
The �fth section o�ers a brief summary.

2. Does a negative price return extreme exist?

We begin by de�ning the variables of a �nancial market
and examining the di�erent perspectives from which one
can view these variables as coordinates. We will then
derive a general equation of market dynamics based on
these perspectives and show that the solution suggests
the existence of negative price return extremes.
De�ne a unit period as t0 → t1 with the quantity t =

t1 − t0 = 1 unit of elapsed time. De�ne an asset's price
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as a function of time, or p(t), where the change in price
over one unit of elapsed time is ∆p(t) = p(t1) − p(t0).
De�ne r(t) as the �price return� for the unit period t and
|r(t)| as the modulus of the price return, where r(t) =
∆p(t)/p(t0).
A �nancial asset has a price return con�guration space

V (r) = {rj ∈ R : j ∈ N}. An asset also has a set of pos-
sible price return con�gurations as functions of elapsed
time {r(t) ∈ R : t ≥ 0, t ∈ R} ⊆ V (r). The price re-
turn dynamics of a �nancial market are time-dependent.
Thus, a market's price return con�guration space is a
vector �eld de�ned by price return coordinates r(t) that
have the time derivatives ṙ(t), r̈(t), etc.
We use the term �price return� here since it is more

common in the �nancial market literature. We use it
without regard to dividends because we're only interested
in the normalized movement of the price based on the
starting price p(t0), not the �total� return for investment
purposes per se.� Thus, one can think of the price return
(as the term is used here) as the physical displacement
of r on the vector �eld V (r).
Because we are primarily concerned with this normal-

ized change in price (price return) for a unit period, we
can imagine a �price return-time� coordinate system K
such that t0 = r(t0) = 0, t1 = t, and r(t1) = r(t). Let us
arbitrarily, but intuitively, designate an increase in price
return as positive (+) and a decrease as negative (−) in
K. If thought of as a system of rectangular coordinates,
we can imagine t along the abscissa and r(t) along the
ordinate similar to a typical �nancial market chart. We
will �rst consider an asset moving up or down along the
stationary one-dimensional vector �eld V (r). Let us call
this �rst frame of reference K1.
In an active market, traders with the desire to buy an

asset place bid orders and traders wishing to sell place
ask orders. Yet, desire is not enough to directly a�ect a
change in the price of an asset. There must also exist an
interaction with another trader to turn a bid or ask order
into a transaction. We will call transactions associated
with bids �bid volume.� This becomes the scalar quantity
B representing the number of bid transactions for a unit
period. �Ask volume� is similarly the scalar quantity A
representing the number of ask transactions for a unit
period.
Analysis of historical data from active markets sug-

gests B has the potential to reduce prices while A has
the potential to increase prices. The bid price is de�ned
as the highest current price at which a trader is willing
to buy. The ask price is de�ned as the lowest current
price at which a trader is willing to sell. Therefore, as
bid transactions transpire, the once highest bid price van-
ishes and the next highest (but lower than before) price

��Total returns� for investment purposes typically include div-
idends or other income produced by the asset separate from any
capital gain. I am again grateful to an anonymous reviewer for
pointing out this distinction.

becomes the highest current price. As ask transactions
transpire, the once lowest ask price vanishes and the next
lowest (but higher than before) price becomes the lowest
current price. Thus, B is selling volume and A is buying
volume [17].

When a �nancial market experiences more buying vol-
ume than selling volume, there are more traders buying
at the ask price. This �pushes� the asset up in price
(it changes the price in the positive direction). When a
market is experiencing more selling volume than buying
volume, there are more traders selling at the bid price,
which �pushes� the asset down in price (it changes the
price in the negative direction). Because we de�ne the
price return r as a function of these positive or negative
changes in price, we claim that the net e�ect (i.e., the
result we can observe) of bid volume on the price return
r in K1 is the product of the bid volume B and the neg-
ative price return −rB since we arbitrarily de�ned price
return reductions as negative. Likewise, the net e�ect of
ask volume is the product of the ask volume A and the
positive price return rA since we arbitrarily de�ned price
return increases as positive.

From this we see that the net e�ect of all bid volume
for a unit period changes the state of the asset along the
stationary price return dimension in the negative direc-
tion from r(t0) to −r(t1). This negatively-directed result
is proportional to the e�ect of bid volume on the price
return attributable to it, or −r̈B ∝ (B)(−rB). Similarly,
we see that the net e�ect of all ask volume for a unit pe-
riod changes the state of the asset along the price return
dimension in the positive direction from r(t0) to +r(t1),
or that r̈A ∝ (A)(rA). If we think classically about these
mechanics, we �nd that they are consistent with the dy-
namics underlying Hooke's law and, therefore, should not
be unfamiliar.

Historical data analysis indicates that not all markets
given identical ask and bid volumes have the same ask
and bid volume e�ects with respect to positive and nega-
tive changes in price returns. As a result, we can assume
that each market additionally has some speci�c inertial
property � let us call it n� that constrains the asset in
its positive or negative movement away from r(t0) in K
for a speci�c unit of time. Essentially, n is some number
speci�c to a particular market for that unit period that
is inversely proportional to the change in the price re-
turn. The lower the number, the more likely the asset is
to move further from r(t0), and vice versa. Therefore, n
is minimized when the modulus |r(t)| is maximized, and
n is maximized in the limit as |r(t)| → 0. As a result, we
can express the price e�ects of bid and ask volumes as
ratios speci�c to each market. We will call these speci�c
ask volumes and speci�c bid volumes, respectively.

Of course, this description is incomplete. Ask and bid
volumes do not exist in isolation. In an active market,
there is always a superposition of speci�c ask and spe-
ci�c bid volumes over any unit period where the asset
is pushed in the positive price return direction when the
ask volume dominates and pushed in the negative price
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return direction when the bid volume dominates. Recall-
ing the underlying dynamics of Hooke's law mentioned
earlier, we see that this speci�c net volume gives us(

A−B
n

)
r(t) = r̈(t),

where r(t) = rA − rB . From this, we can de�ne the net
e�ect on the price return for a unit period (the dominat-
ing net �push�) as r̈(t) = r̈A− r̈B , where r̈(t) is positive if
A dominates for the unit period and negative if B domi-
nates. Thus, the net e�ect of the speci�c net volume �
which we will call G(r) � equals this net �push� and the
direction is determined by whether the ask or bid volume
dominates for that particular unit period. This yields the
expression

G(r) = r̈(t). (1)

Again, this is the equation for an asset moving through
the stationary price return dimension resulting from the
net e�ect of the speci�c ask and speci�c bid volumes for
that unit period. It is, in fact, market mechanics as de-
scribed from the perspective of the vector �eld V (r).

Now let us look at this behavior from a second frame
of reference, K2. This new perspective is identical to K1

in all respects except one: instead of the price return
dimension being stationary and the asset moving along
it, in K2 the asset is �xed and V (r) moves up and down
relative to the stationary asset. This becomes the change
in the price return as described from the perspective of
the asset. The speci�c ask and bid volumes remain the
cause of any change in V (r) just as in K1. The only
di�erence between K1 and K2 is what we consider to be
stationary and what we consider to be changing. Each
produces indistinguishable data regarding price return
magnitudes and their changes.

After imagining this behavior from the K2 perspec-
tive, we can conclude that to get the same e�ect as ob-
served in K1 this new frame of reference must experience
oppositely-directed changes in V (r). Therefore, every ±
price return change in the asset resulting from the net
e�ect of speci�c ask and bid volumes in K1 is the same
as a ∓ change in V (r) in K2. This means

G(r) = −V ′(r), (2)

where the prime denotes a price return derivative just as
the dot denotes a time derivative. Combining Eqs. (1)
and (2) gives us the dynamics of a market in terms of
both changes in time and price return, or r̈(t) = −V ′(r).
But what does V ′(r) comprise? Recall that r(t0) = 0

in K, which we will now express as simply r0 for conci-
sion. A review of historical data from active, robustly-
traded markets reveals that the mean price return for a
unit period tends to be relatively close to zero in K, the
speci�c frame of reference notwithstanding. Therefore,
we can approximate the price return vector �eld with
the following Maclaurin series:

V (r) ≈ V (r0) +
V ′(r0)

n
r +

V ′′(r0)

2n
r2 + . . . (3)

(N.B.: For markets where the mean price return for a unit
period is not relatively close to zero inK, this assumption
cannot hold.)

The �rst two terms in Eq. (3) give us no new infor-
mation about V (r). Thus, the �rst meaningful term
in this series is V ′′(r0). Because changes in the price
return derivative of the vector �eld are uniform for all
price return values, we see that V ′′(r0) is some mean
constant of the vector �eld for that particular unit pe-
riod t. Let us call this mean constant h. Therefore,
from Eq. (3) we get

V (r) ≈ r2h

2n
. (4)

Yet, as we just discussed, the only meaningful mean
constant for any given unit period is the net (ask and
bid) volume for that period since we know from Eqs. (1)
and (2) that

−V ′′(r) = G′(r) =
A−B
n

= −H,

where H is the speci�c net volume h/n. Therefore,
H = (B −A)/n.

From Eq. (4), we see that V ′(r) ≈ Hr(t). Conse-
quently, the price return dynamics for any unit period
in K, from both perspectives, can be expressed as the
harmonic approximation

G(r) +Hr(t) = 0. (5)

This is consistent with Eq. (2).

Equation (5) asks us for a solution to the second-order

linear ordinary di�erential equation d2

dt2 r(t) +Hr(t) = 0.
Assume the solution is proportional to exp(βt) where β
is a constant. This gives us β2 exp(βt) +H exp(βt) = 0.
For a �nite β, exp(βt) 6= 0. This leaves the roots of

the polynomial β2 + H = 0, which are β = i
√
H and

β = −i
√
H, where i is the imaginary unit. This yields

r1(t) = u exp

(
ϕ0 + t

√
A−B
n

)
,

r2(t) = v exp

(
ϕ0 − t

√
A−B
n

)
,

where u and v are arbitrary constants and ϕ0 is the initial
condition of the phase ϕ inK (we will de�ne and examine
ϕ more closely in just a minute).

We hold that r(t) = r1(t) + r2(t) is the projection of
the complex number z and its complex conjugate z∗ on
the real axis. If we assume that u = v = |z|/2, we get
the following well-known solution to Eq. (5):

r(t) =
1

2
(z + z∗) =

1

2

(
|z|e iϕ + |z|e− iϕ

)
= |z| cosϕ.(6)

Here, the phase, or principal argument of z, is

ϕ = Arg(z) = ϕ̇t+ ϕ0. (7)

The change in the phase for each unit period is the radial
frequency ϕ̇, and the square of this time derivative is H.
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Thus, for a unit period, ϕ̇(t) = ϕ−ϕ0. If ϕ0 is constant,
it is clear that one can determine r(t) from ϕ̇(t).
In solving Eq. (5) as an initial value problem, we see

that ϕ(t) =
∫ √

H dt = t
√
H + C. Here we interpret

the constant of integration as the starting point of ϕ in
K at t0, or C = ϕ0, which is consistent with Eq. (7).
This means ϕ0 is constant in K so one can determine
r(t) for a speci�c unit period from ϕ̇(t). Therefore, we
see from Eq. (6) that the price return is a function of
the net ask and bid volumes over a unit period. This is
consistent with our initial assumption that any change in
the price return is a direct result of the total ask and bid
transactions for a unit period. There are no other factors
directly a�ecting the mechanics of r(t).
Additionally, |z| is the complex modulus in Eq. (6).

We can regard this also as a radius vector on the com-
plex plane. Thus, Eq. (6) becomes

r(t) = |z| cosϕ.

The cosine function, by de�nition, has the property
cosϕ ≥ −1. Multiplying through by |z| gives us r(t) ≥
−|z|. Consequently, the negative complex modulus is
equivalent to the negative extreme price return magni-
tude. We can conclude, therefore, that for a given unit
period there exists at least a negative extreme price re-
turn of r(t) = −|z|.
There are two conditions to this conclusion. The �rst is

that a market might never reach −|z| in the unit period
t, so it might never be observed. We claim only that
at least the negative extreme theoretically exists for any
unit period t.
The second condition stresses the �nal prepositional

phrase of the previous sentence: the measure of a price
return extreme is unique only for a speci�c unit period
t. The distinction here is that we conclude a negative
extreme price return theoretically exists for any speci�c
unit period; not for a speci�c market over a sequence of
the same unit periods. In this way, the conclusion here
does not violate the empirical power law discussed in the
�rst section.

3. Are negative price return extremes

non-trivial?

Now that we have provided evidence that negative
price return extremes might exist, the next step is to
decide under what conditions these extremes approach
triviality, if any. De�ne triviality as an extreme price
return r(t) = −1. In other words, even if price return ex-
tremes exist, they become trivial if all we can say about
them is that a market will hit a zero-price �oor for some
unit period. The conclusion that a market losing all value
can be de�ned as an extreme negative price return is self-
evident and, therefore, trivial. Hence, the only price re-
turn extremes that are meaningful (non-trivial) to any
risk analysis are those between −1 and 0. As previously
discussed, the price return might exceed unity in the pos-
itive direction, but never in the negative direction.

Here we introduce the Lagrangian function L(r, ṙ, t),
which is a function of the price return coordinates,
their time derivatives, and time. It contains the same
information about the dynamics of a market in K
as contained by Eq. (5).� From the time integral of
the Lagrangian of Eq. (5) we get the following action
functional of an asset:

S[r(t)] =∫ t1

t0

dt

[
L(r, ṙ, t) =

1

2

(
A−B
n

r2 + ṙ2
)]

=
nr2

2t
. (8)

We see that
√
S = +r

√
n/2 and −

√
S = −r

√
n/2

since t = 1 for any unit period. This means that besides
the price return, the remainder of the action functional
can be regarded as essentially a constant due to the in-
verse square relationship between n and r. As a result,
Pr(±r) ≡ Pr(±r

√
n/2) for any given market.

For the probability that either the positive or negative
square root of the action functional is on the interval be-
tween the extreme values of the square root of the action
functional, we can write

Pr
(
−|z|

√
n/2 ≤

[(
−
√
S
)
or
(

+
√
S
)]
≤ +|z|

√
n/2

)
= 1− erfc

(
|z|
√
n/2

)2
,

where erfc(X) is the complementary Gauss error func-
tion, de�ned as 1−Pr(−X ≤ x ≤ X). Recall that n is a
minimum at this extreme.

Because |z| is an extreme value, this probability must
approach certainty since by de�nition all measures for
the positive or negative square root of the action func-
tional must fall between the positive or negative square
root of the action functionals containing the positive or
negative extreme price returns. We can include the pos-
itive values here since they are at least as extreme as the
negative values, although we do not contend that an up-
per limit exists for the reasons we explained previously.

This means that erfc
(
|z|
√
n/2

)2
→ 0.

We can de�ne the phase ϕ as having values on the
interval between ±π, where π is a maximum radial mea-
sure in the complex plane that is consistent with both
the generally-accepted range of the principal value of
Arg(z) [18] and the fact that cosine is an even function
in Eq. (6). As with the probability of the square roots
of the action functional, we see that 1 − erfc(π)2 → 1,
which implies erfc(π)2 → 0. Therefore,

erfc
(
|z|
√
n/2

)2
= erfc(π)2. (9)

This is only an approximation, but we assume the ap-
proximation close enough to express the relationship as
an equality for our heuristic purposes.

�The Lagrangian of a market actually precedes its equation of
motion; i.e., we construct Eq. (5) from the Lagrangian in Eq. (8).
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Another way to think about this is to return to the
complex plane from the previous section. If the real price
return r(t) is the median of z(t) and z∗(t), then there are
always two complex numbers and two phases for each
real price return on K. For example, at t0 of any unit
period ϕ0 = π

2 in complex vector space, but there is also a
phase in the complex conjugate (dual) vector space where
ϕ∗0 = −π2 . Similarly, there is a number z in complex space
for every real price return as well as a number z∗ in the
complex conjugate space [19]. Therefore, the probability
of any r(t) is equivalent to the probability of z and the
probability of z∗, i.e., Pr(r) ≡ Pr(z)Pr(z∗) ≡ Pr(|z|)2. It
is also equivalent to the probability of ϕ and the proba-
bility of ϕ∗, i.e., Pr(r) ≡ Pr(ϕ)Pr(ϕ∗) ≡ Pr(|ϕ|)2.
If we take the inverse complementary error function of

both sides of Eq. (9) we get |z|
√
n/2 = π, which we can

express as

|z|2n = γ, (10)

if we de�ne the constant γ := 2π2.

Equation (10) still requires knowledge of n for each
market to �nd the value of |z|. Since n is not a num-
ber regularly measured, we should try to approximate
|z| without relying on a known minimized value of n. If
we look at the relationship between the absolute value of
a speci�c price return value ρ (i.e., ρ ≥ 0) of a market
and the probability that other values of |r(t)| in the same
market are greater than ρ, we conjecture that

Pr(|r(t)| > ρ) = erfc

(
ρ

√
n

2

)2

= exp

(
− ρ
µ

)
, (11)

where µ is the expectation value of |r(t)|. From this con-
jecture, we assume the following:

1. The measure of centrality (expectation value) of
|r(t)| is the arithmetic mean of the absolute value
of all observed price returns for some order of t;

2. The measure of centrality of the probability that
any |r(t)| is greater than a speci�c ρ is the geomet-
ric mean of all possible probabilities; i.e., all real
numbers on the interval [0, 1]; and

3. These measures of centrality coincide.

From these three assumptions, we can de�ne µ as the
speci�c price return that maps to the probability of any
|r(t)| being greater than the speci�c absolute price return
ρ that is equal to 1/e, or

µ := ρ 7→ Pr(|r(t)| > ρ) = exp(−1),

since the geometric mean of all real numbers on the in-
terval [0, 1] is exp(−1). This is a special case of Eq. (11)
when µ = ρ.

We can next substitute |z| for ρ in Eq. (11) to get

erfc

(
|z|
√
n

2

)2

= exp

(
−|z|
µ

)
. (12)

From this and Eq. (9), we see that

erfc(π)2 = exp

(
−|z|
µ

)
. (13)

If we de�ne the constant λ := log
(
erfc(π)2

)
, this equa-

tion becomes

−|z| = µλ. (14)

Thus, we �nd that a market's extreme negative price re-
turn is linearly dependent on the expectation value of its
absolute price return.
Because both γ and λ are constants relating to the

radial measure of the phase, we can combine them into
a single constant k = γ/λ2. From Eqs. (10) and (14),
we can then approximate each market's unique minimum
inertial constraint at its negative price return extreme
with the expression n = k/µ2 since µ is calculable from
historical data.

4. Limitations

The method outlined here is not without limitations,
the �rst of which is that this method is merely a heuris-
tic and not a complete theory. It plays with the idea of
market movements using the more rudimentary tools of
classical mechanics in an attempt to approximate nega-
tive price return extremes for any given period. It does
not pretend to be, nor should it be taken as, anything
more.
As mentioned previously, this method is only poten-

tially useful for markets that are robust and actively
traded. It cannot be applied to markets where the mean
of the price return over a sequence of unit periods is not
close to zero. This requirement implies a form of mean
reversion, which remains controversial in the literature.
The heuristic also su�ers from an asymmetry in that

it only approximates lower limits of price returns and
intentionally fails to acknowledge an upper limit. This
allows the heuristic to escape con�ict with the power law
form of a probability distribution function observed em-
pirically, but it also suggests that the magnitude of the
radial vector |z| is potentially di�erent for positive price
returns than for negative price returns for a speci�c unit
period. On the complex plane, this presents as an ex-
treme negative price return of −r(t) = −|z|, but as an
extreme positive price return of r(t) = ∞. While this is
possible, it is certainly odd and is perhaps evidence that
the heuristic is incomplete in its understanding of market
mechanics.
Another signi�cant limitation of this heuristic is that

it relies heavily on the sample with which one chooses
to calculate µ since, per Eq. (14), the accuracy of one's
approximation of −|z| depends wholly on this sample.
Therefore, this method cannot claim to approximate
�xed extreme price return measures for each market since
some degree of selection bias in a choice of sample for µ is
unavoidable [20]. While it is possible with this heuristic
to approximate an extreme negative price return given
su�cient historical data, any such approximation is only
valid up to the time of the analysis itself and the sample
period chosen to calculate µ. The extreme measure will
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most likely vary over time for each market and should not
be considered an absolute negative price return extreme
for the sequence of all unit periods. In other words, the
inertial coe�cient n remains in �ux for each market.
Additionally, this heuristic is based on a

uniformitarian-like assumption that, to some ex-
tent, historical data can be used to predict extreme
price returns. This is, again, because the approximation
of −|z| depends entirely on the the sample chosen to
calculate µ. There is signi�cant disagreement in the
literature over whether historical data can be used
predictively.
Still, this method might improve our understanding of

the rules that undergird market mechanics and, there-
fore, serve as an additional tool for managing market
risk when faced with negative price returns that devi-
ate signi�cantly from historic expectations. For exam-
ple, based on historical data prior to the market close of
October 16, 1987, Eq. (14) would have approximated a
daily negative price return extreme for Coca-Cola Com-
pany stock (symbol: KO) of −|z| = −0.2661 for t = 1
trading day. During the next trading day, October 19,
1987, KO reached an intraday low ratio of −0.2846,
but closed at r(t) = −0.2451. The approximation of
−|z| = −0.2661 would have been of some assurance for
KO's risk managers (and a potential buying opportu-
nity for traders) at −0.2846 ≤ r(t) < −|z|. More re-
cently, there were similar assurances/opportunities for
Automated Data Processing, Inc. (ADP) on May 6, 2010,
and Bitcoin (BTC/USD) on August 1, 2014, to name a
few.

5. Summary

By regarding market mechanics in terms of time and
price returns from two separate perspectives, we have
presented a heuristic suggesting that �nancial markets
might have extreme negative price returns for speci�c
unit periods. These extremes appear non-trivial except
in the limits as µ → 1/λ or as n → γ+. Historical data
analysis can illumine whether such non-triviality is com-
mon in active markets.
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