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We study the localization properties of the 1D tight-binding equation, where the on-site potential is aperiodic
or pseudorandom. The on-site potential values are derived from economic time series databases. We carry out
numerical work involving direct diagonalization to study localization properties of the system. In our model,
eigenstates at the band center are all extended whereas the band-edge states are all localized. This diagonalization
scheme is applied to di�erent segments of the time series. The Lyapunov exponent behaves at E = 0 as γ(E) ∼ |E|β .
The results lead us to conclude that this mathematical tool could be used as a moving indicator to study economic
charts.
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1. Introduction

Since long time ago, scientists have tried to infer future
states of dynamical systems. The prediction of such sys-
tems is of great importance in all scienti�c areas. These
studies include topics as diverse as weather forecasting,
the estimation of quantum evolution, statistics, econo-
physics [1] or the prediction of social behavior.
Quantum mechanics can provide a theoretical frame

to model socioeconomic systems. In the last years, the
Hamiltonian formulation of quantum �nance (QF) and
the random matrix theory (RMT) has been applied to
�nance [2]. Quantum �nance refers to the application
of the mathematical formalism of quantum mechanics to
problems arising in �nance. The Hamiltonian formula-
tion of quantum �nance is an area of active research.
Using quantum �nance, the theory of coupon bond and
interest rate options have been studied extensively [3].
In the decade of �fties, quantum random matrix the-

ory (QRMT) was developed to provide a framework for
the study of quantum many-body systems. Since being
reported [4], RMT has been the object of much attention
due to its possible application to �nance time series [5].
Using this bridge, many techniques developed along

the years can be transferred to study economic time se-
ries. Utilizing this approach, we analyze in detail a tight-
binding model in which the on-site potential values are
derived from �nance data.

2. Model

In condensed matter physics, the approach that starts
out from the wave functions of the free atoms is known as
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linear combination of atomic orbitals or tight-binding ap-
proximation. Tight-binding method is applied to a wide
variety of solids [6]. Electrons in this model are tightly
bound to the atom to which they belong (Fig. 1). Due to
the interaction with potentials and states on neighboring
atoms is limited, the wave function of the electron will
be rather similar to the atomic orbital of the free atom
to which it belongs [7].

Fig. 1. Schematic drawing of a 1D atom chain. Charge
distributions of adjacent atoms overlap when the atoms
are brought together to form a one-dimensional crystal.

The one-dimensional nearest-neighbor tight-binding
model is described by the equation

un+1 + un−1 + Vnun = Eun, (2.1)

where the strength of the nearest-neighbor hopping has
been set equal to unity. In Eq. (2.1), un is the amplitude
of the electron wave function at the n lattice site with
Vn as the on-site potential. E is the electron eigenvalue.
A Vn periodic in n has all its states extended (the Bloch
states).

Before developing the model, we introduce two related
quantities: the density of states D(E) and the Lyapunov
exponent γ(E). The density of states is
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D(E) =
∑
j

δ(E − Ej), (2.2)

where Ej are the eigenenergies. In addition, the localiza-
tion length of wave functions follows the equation:

|ψj(x)| ∼ e−x/ξj , (2.3)

where ξj is the localization length. The Lyapunov expo-
nent is seen to be the inverse localization length,

γj =
1

ξj
. (2.4)

There are two equations of particular interest in the lo-
calization problems

γj(Ej) =
1

N − 1

∑
j 6=l

ln |Ej − El| (2.5)

and

γj(Ej) =
1

N − 1

∑
j 6=l

ln

∣∣∣∣un+1

un

∣∣∣∣ , (2.6)

where N is the number of atomic sites. Equations (2.5)
and (2.6) are useful in obtaining the Lyapunov exponent.

Then, the behavior of the Lyapunov exponent at the
mobility edge can be written as

γ(E) ∼ |E − Ec|β (2.7)

around E > Ec.

This model has been developed to study a di�erent
class of one-dimensional potentials which are neither pe-
riodic nor random. These potentials are deterministic
and aperiodic, and are described by the equation

Vn = λ cos(παnν), (2.8)

where α is a real number and λ is the strength of the
potential having a value between 0 and 2. α is a real
number and ν is taken to lie between 0 and 1. Equa-
tion (2.8) describes a very slowly varying potential. The
slow spatial variation of Vn is crucial in producing the
localization properties of the model. For 0 < ν < 1 and
0 < |λ| < 2, Das Sarma et al. found the existence of a
mobility edge in this one-dimensional model [8].

In general, one-dimensional models do not allow for the
existence of mobility edges. The random Anderson model
produces only localized electron states in one dimension
for all energies [9, 10]. The incommensurate Harper's
equation has not mobility edges either, with all states
localized or extended. The existence of mobility edges
in Eq. (2.8) is unique in the sense that it is the only
known gapless potential allowing for the existence of a
metal�insulator transition.

The potential de�ned by Eq. (2.8) has extended states
at the band center (−Ec < E < Ec) and localized
states at the band edges (|E| > Ec). The mobility
edges are at ±Ec = ±(2 − |λ|). The unperturbed tight-
binding model (λ = 0) has absolute band edges at ±2,
whereas the perturbed model has absolute band edges at
±Ec = ±(2− |λ|).
The potential de�ned by Eq. (2.8) has long-range co-

herence. The nature of metal�insulator transition in
this potential is substantially di�erent from the usual
Anderson-localization problem. We can notice that a

Vn random potential produces all localized states in one-
dimension (the Anderson model). As n increases, this
potential becomes more and more slowly varying. For
ν ≥ 2, Vn is pseudorandom and Eq. (2.8) becomes equiv-
alent to the random Anderson model producing only lo-
calized states in 1D. Thouless [11] showed that all states
(except exactly at Ec = 0) are localized at 1 < ν < 2.
The Lyapunov exponent vanishes very slowly as one ap-
proaches the band center.
The Lyapunov of the class of one-dimensional poten-

tials being studied in this paper is allowed to have mo-
bility edges at Ec = 0 (λ = 2). It is found that the exact
nature of the divergence depends on the particular form
of the on-site potential Vn. In this work, we shall use this
property to try to forecast �nance time series.
One can use the successive di�erences of the natural

logarithm of price P (n). Then, the Vn potential is mod-
i�ed as follows:

V ′n = λ cos(παnν) + ϑln
P (n+ 1)

P (n)
, (2.9)

where ϑ is an adimensional coe�cient taken to be ϑ = 50.
The price correction to the potential is about 10%. In our
case, the economic time series database is the EURUSD
daily price from March 2011 to October 2017 (Fig. 2).

Fig. 2. EURUSD Daily versus time.

We shall try to explain the role of the second term of
Eq. (2.9), the ϑ term (the market term). The market
term acts as a disorder term, i.e., the typical random
potential present in localization problems. The tight-
binding approach has been widely used to study localiza-
tion problems considering random and incommensurate
potentials [8]. We can also notice that periodic Vn is the
usual Bloch case whereas Eq. (2.1) with a random poten-
tial is the Anderson model. A random Vn can be used
with no loss of generality.
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The �rst term on the right-hand side of Eq. (2.9) is the
only known gapless potential allowing for the existence
of a metal insulator transition in one dimension. It is
an incommensurate potential [8]. The market term (ϑ
term) acts as disorder term in our model. In this way,
the market behavior will be re�ected in the localization
properties of the total potential due to the speci�c prop-
erties of the incommensurate potential, �rst term on the
right-hand side of Eq. (2.9). The ϑ coe�cient value has
been taken as ϑ = 50 to have visible results.

3. Results

We have studied the localization properties of a class
of 1D tight-bindings models where the on-site diagonal
potential is V ′n:

un+1 + un−1 + V ′nun = Eun. (3.1)

Our calculation involves direct diagonalization of the
Hamiltonian to directly calculate the eigenenergies. This
diagonalization scheme are applied to di�erent segments
of the time series. In our case, the segment size Ns is 400
points.
The Lyapunov exponent γ(E) for our model as well as

the critical exponent β de�ned by the relations γ(E) ∼
|E − Ec|β can be easily obtained. In Fig. 3 we show our
numerical results for γ(E) which clearly shows the exis-
tence of mobility edges (and a metal�insulator transition)
at E = ±1.6.

Fig. 3. The Lyapunov exponent versus energy for the
potential de�ned in Eq. (2.8). We can see that the mo-
bility edges are at Ec = −1.6 and Ec = 1.6.

In Fig. 4 we plot our calculated Lyapunov exponent
for the Vn and V ′n potentials by changing λ to λ = 2.0,
keeping the other parameters the same (πα = 0.2 and

ν = 0.7). The two mobility edges at ±1.6 now merge and
shift to the center of the band at Ec = 0. The Lyapunov
exponent vanishes very slowly at the band center. The
segment size is Ns = 400.

Fig. 4. The Lyapunov exponent versus energy for the
potential de�ned in Eq. (2.8). We can see that the
mobility edges are at Ec = 0. Solid line: Vn potential.
Dashed line: V ′

n.

Fig. 5. χ versus time (day). We have also plotted EU-
RUSD daily price.
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Examining Fig. 4, we discover that we can easily obtain
the slope of γ(E),

χ(E) =
dγ(E)

dE
. (3.2)

The time series is divided into N/Ns smaller segments
being N the time series size. Then, we calculate χ(t)
for each segment. If we obtain the χ(t) value every Ns
points, we have a moving indicator.
Figure 5 shows χ(t) versus time (day). We have also

plotted EURUSD daily price. If the price is decreased,
the χ value will be increased (see arrows in Fig. 5) due
to the V ′n potential contribution, Eq. (2.9). Then, the χ
value decreases again as time progresses. As a result, this
mathematical tool could be used as a moving indicator
to study economic charts.
In summary, we analyze the localization properties of

the one-dimensional tight-binding equation, where the
on-site potential is derived from �nance data. A diag-
onalization scheme is applied to di�erent segments of the
time series. We have shown the possibility of having a
new moving indicator based on a quantum mechanical
tool. The speci�c properties of the right-hand side of
Eq. (2.9), i.e. the incommensurate potential, can re�ect
market changes.
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