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By using density functional theory within the Perdew–Burke–Ernzerhof generalized gradient approximation
implemented in the VASP code, we study the structural, elastic, electronic, and thermodynamic properties of C15
Laves-phase compound HfZn2. Comparing the lattice constants calculated from the Perdew–Burke–Ernzerhof gen-
eralized gradient approximation and local density approximation, we find that the former is in better agreement
with the experimental data. The elastic constants of HfZn2 calculated by strain-stress method indicate that they
keep stable up to 100 GPa. The bonding characteristics are discussed by analyzing the energy band structure,
charge density distribution and charge density difference. Phonon dispersion curves and phonon density of states of
HfZn2 at the different pressure are predicted for the first time. In addition, there is no imaginary frequency in the
phonon band at different pressure, which also shows that HfZn2 is stable up to 100 GPa. Vibrational models are
also illustrated based on phonon and group theory. The thermodynamic properties under high temperature and
high pressure are calculated by different thermodynamic models. The heat capacity at constant pressure and low
temperature calculated by quasi-harmonic approximation is more close to the measurement than that calculated
by quasi-harmonic Debye models.
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1. Introduction
It has a great importance to study the Laves phase

intermetallic compounds due to their interesting char-
acteristics including polymorphism, peculiar magnetic,
electrical properties [1, 2]. Some of them are expected
as hydrogen storage materials [3–5] and potential high-
temperature structural materials [6] with excellent cor-
rosion and oxidation resistance. Besides, the early-
transition-metal Laves-phase materials have anomalous
elastic properties [7–9], which can be attributed to
an electronic band-structure effect. The Laves phases
formed by main group metallic elements and transition
metals as well as by lanthanides and actinides can be clas-
sified into three structure type: the cubic C15, hexagonal
C14, and hexagonal C36. ZrZn2 with the Laves phases
structure (C15) has widely attracted both theoretical and
experimental attention [10–15], such as the low tempera-
ture thermal properties, electronic structure, and itiner-
ant magnetism ferromagnetic superconducting. As an ex-
change enhanced paramagnet, HfZn2 has the same struc-
ture and electronic structure as ZrZn2, hence the inves-
tigation into the 5d compound should be also quite in-
teresting. The magnetic and low temperature thermal
properties of HfZn2 have been studied in the past [16–
18]. In 2014, the elastic and thermodynamic properties
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of HfZn2 and ZrZn2 under high pressures were studied
from first-principles calculations [19]. Atikur Rahman
et al. investigated the optical properties of HfZn2 and
thought that it should be a good coating material based
on reflectivity being high in the visible-ultraviolet region
up to 16 eV [20]. In addition, they reported the super-
conductivity of HfZn2 at Tc ≈ 0.049 K by first-principles
method [21].

The Debye temperature θD is one of the most impor-
tant parameter that determines the thermal characteris-
tics of materials, but we find the values of the Debye tem-
perature have a little discrepancy in different experiments
conducted [16, 17]. The only calculated Debye temper-
ature based on quasi-harmonic Debye model [19] is just
in accordance with the result of Ikeda et al. [17]. Fur-
thermore, the vibrational properties of HfZn2 have not
ever been investigated. To obtain a comprehensive and
accurate knowledge of HfZn2, we calculate the structural,
elastic, electronic, vibrational, and thermodynamic prop-
erties of HfZn2 under high pressures. The Debye temper-
ature calculated through the elastic constants method is
compared with other results. In particular, the thermo-
dynamic properties of HfZn2 under high temperatures
and high pressures were investigated by more methods,
such as the Debye–Einstein model, quasi-harmonic ap-
proximation (QHA). The rest of parts of this paper are
organized as follows. In Sec. 2, the computation details
are given. The results and discussion are shown in Sec. 3.
Finally, a summary of our results is presented in Sec. 4.
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2. Computational method

The first-principles calculations were performed using
the Vienna ab initio simulation package (VASP) [22–24]
within the framework of density functional theory. The
electron–ion interaction was considered in the form of the
projector-augmented-wave (PAW) method [24, 25] with
a plane wave cut-off energy of 550 eV, which was found
to be enough for the structural, elastic, thermodynamic
properties calculations, as well as electronic calculations.
No significant changes was found in the key parameters
when the cut-off energy was increased. For the exchange
and correlation terms in the electron-electron interac-
tion, the Perdew–Burke–Ernzerhof (PBE) [26] exchange–
correlation functionals within the generalized gradient
approximation (GGA) and local density approximation
(LDA) [27] were used. The hafnium 5p66s25d2 and zinc
3d104s2 orbitals were treated as valence electrons. We
used the Monkhorst–Pack K-point mesh [28] with a grid
size of 17×17×17 for integration in the irreducible Bril-
louin zone to ensure a convergence of total energy less
than 10−5 eV/atom in structural and electronic calcula-
tions.

In order to obtain the vibrational properties, we
employed the supercell approach to carry out the
phonon calculations, where the 2×2×2 supercell was
adopted. Real-space force constants were calculated
by using the density functional perturbation theory
(DFPT) [29, 30] implemented in the VASP code.
PHONOPY code [31, 32] was used for the post-processing
of real-space force constants to obtain the phonon fre-
quencies, phonon density of states, and thermodynamic
properties.

3. Results and discussion

3.1. Structural properties

The lattice parameter is the essential quantity related
to the structure of the material, which determines pre-
dominantly the physical properties of the material. In-
termetallic compound HfZn2 belongs to the space group
FD-3M (227) with cubic crystal structure. There are
two formula units per unit cell in HfZn2, where Hf atoms
sit at 8a (0, 0, 0) and Zn atoms occupy Wyckoff position
16d (0.625, 0.625, 0.625). The optimized lattice constant
a0 is computed from the equilibrium volume V0, which
corresponds to the minimum energy (Fig. 1). The E–V
data (energy E and volume V ) were fitted to the third-
order Birch–Murnaghan equation of state [33] to deter-
mine the bulk modulus B0 and its first derivative B′ at
zero pressure
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0 − 4). The calculated val-

ues of the lattice parameters a0, bulk modulus B0 and

its first derivative B′ by the Perdew–Burke–Ernzerhof
(LDA) and generalized gradient approximation (GGA)
are listed in Table I, together with the available experi-
mental and other theoretical results. From Table I, a0,
B0, and B′ calculated using GGA (PBE) are in reason-
able agreement with the given experimental data [34] and
other calculated results [19]. It is found that the results
from LDA have a big difference with the other results,
especially for the lattice parameter a0, which is underes-
timated by 0.17 Å less than the experimental value [34].
Therefore, for the other properties of HfZn2, we used
GGA as the exchange–correlation term.

Fig. 1. Total energy versus cell volume of HfZn2 cal-
culated using GGA (PBE) and LDA.

TABLE I

Equilibrium lattice parameters a0 [Å] of HfZn2 calculated
using both GGA and LDA for the exchange-correlation
term. The results are compared with experimental data
and other results.

Properties Exp. LDA GGA
Other

calculations
a [Å] 7.32a 7.147 7.348 7.343b, 7.375c

B0 136.226 110.778 115.2b, 160.485c

B′
0 4.38 4.42 4.56b

a[34]; b[19]; c[20]

3.2. Elastic properties
Mechanical and dynamical behaviors of crystals can be

obtained from the elastic properties. Here, the second-
order elastic constants of HfZn2 at different pressure are
calculated using strain-stress method [35]. Only three
elastic constants are independent owing to the cubic
structure. We find that the values of all elastic constants
calculated are positive over the considered range of pres-
sure (0–100 GPa), and satisfy the Born stability crite-
ria [36]:

C11 + C22 + 2P > 0, C11 − C12 − 2P > 0,

C44 − P > 0, (2)
where P is external pressure. The polycrystalline bulk
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modulus B and shear modulus G can be obtained
from the elastic constants based on the Voigt–Reuss–Hill
(VRH) average scheme [37]. Here the formulae for cubic
structures are

BV = BR = (C11 + 2C12)/3,

GV = (C11 − C12 + 3C44)/5,

GR = 5(C11 − C12)C44/ [4C44 + 3(C11 − C12)] ,

B = (BV +BR)/2, G = (GV +GR)/2, (3)
where Reuss and Voigt give the theoretical lower and
upper bounds to the true polycrystalline B and G, re-
spectively. The Young modulus E plays an important
role in mechanical engineering design, which is estimated
using the relation: E = 9BG/(3B +G).

In Fig. 2, three independent elastic constants and elas-
tic moduli increase monotonously with pressure, and the
lines of G and C44 almost close to each other owing to
that the G mainly results from C44. The calculated zero-
pressure B, G and E are approximately 108.31, 56.62,
and 144.65 GPa, respectively, and slightly smaller than
the calculated values, 116.0, 61.9, and 157.7 GPa for B,
G, E by Sun et al. [19].

Fig. 2. The pressure dependence of elastic constant
and elastic moduli calculated for HfZn2.

The Pugh criterion (B/G) [38] and the Poisson ra-
tio σ [39] plotted in Fig. 3 are introduced to estimate
the brittleness or ductility of HfZn2. If B/G < 1.75,
the material behaves in a brittle manner, otherwise, in
a ductile manner. The obtained values of (B/G) are
always bigger than 1.75 at 0–100 GPa, indicating that
HfZn2 has a good ductility. For the Poisson ratio σ,
σ = (3B − 2G)/[2(3B + G)], a high value always means
to good ductility, whereas a low value is related to brittle
nature.

The obtained values of σ, plotted in Fig. 3a, in-
crease monotonously with pressure between 0 GPa and
100 GPa, whose values vary from 0.277 to 0.314. They

Fig. 3. (a) The pressure dependence of the Pugh ratio
B/G and the Poisson ratio σ, (b) anisotropy A as the
function of pressure.

are consistent with the B/G values. Additionally, for
central force solids, the Poisson ratio σ = 0.25 or 0.5 are
the lower limit or the upper limit, respectively [40], our
value indicates that the interatomic forces in this com-
pound are mainly central under pressure between 0 and
100 GPa. The anisotropy is calculated to get an insight
of the crystal anisotropy

A[41, 42] = 1− 2C44/(C11 − C12). (4)
For an isotropic crystal, the value of A is zero, while for
an anisotropic crystal it is bigger or smaller than the zero.
From Fig. 3a, we find that the values of A decrease with
pressure between 0 GPa and 100 GPa and get zero ap-
proximately at 20 GPa, suggesting that HfZn2 becomes
isotropic crystal. These are a little different from the
trend of A by Sun et al. [19], where the values of A also
decrease with the increasing pressure but they are al-
ways bigger than zero. In a word, the calculated elastic
constants and elastic modulus are mostly consistent with
the results by Sun et al. [19] under 0 GPa to 60 GPa,
but the distinct difference still exists. This is maybe due
to that the different pseudopotentials are adopted in cal-
culations, which result in different lattice constants. Un-
fortunately, there are no experimental results to compare
with our results.

The Debye temperature θD of material at low temper-
ature, where the vibrational excitations arise solely from
acoustic vibrations, can be calculated from elastic con-
stants using the average sound velocity vm. The Debye
temperature θD is expressed as [43]:

θD =
h

kB

[
3n

4π

(
NAρ

M

)] 1
3

vm, (5)

where h, kB, NA, n,M, ρ represent the Planck constant,
the Boltzmann constant, the Avogadro number, the num-
ber of atoms per formula unit, the weight of molecular
mass per formula unit, the density, respectively, and vm
is obtained from

vm =
[
1
3

(
2/(vt)

3 + 1/(vl)
3
)]− 1

3 . (6)
Here, vl and vt, are the longitudinal and transverse elas-
tic wave velocities, respectively, which are obtained from
the Navier equations [44]:



1302 Guo-Jun Li, Lan-Ting Shi, Cui-E Hu, Yan Cheng, Guang-Fu Ji

vl =
√

(3B + 4G)/3ρ, vt =
√
G/ρ. (7)

The calculated elastic wave velocities, the Debye tem-
perature and other results are listed in Table II. Our
calculated Debye temperature is bigger than the theo-
retical results of Sun et al. [19]. However, it lies in the
error region of the experimental results of Radousky et
al. [16] and is just a little bigger than the result of Ikeda
et al. [17]. This suggests that our results are more reli-
able.

TABLE II

Calculated Debye temperature θD, average sound veloc-
ity vm, longitudinal vl and transverse (vt) elastic wave
velocities with other results.

Our results Exp.
Other

calculations
Vm[m/s] 2551.55
Vl [m/s] 4126.74
Vt [m/s] 2290.80
θD [K] 302.35 a321(±25); b289 c283.4

a[6]; b[17]; c[19]

3.3. Electronic structure and chemical bonding

The electronic band structure can provide some impor-
tant information about electronic and optical properties
of materials. The calculated band structure of HfZn2

along G–X–W–K–G–L–W–X direction in the full Bril-
louin zone is shown in Fig. 4. The yellow horizontal solid
line represents the Fermi energy level. The obtained band
structure is similar to those in Refs. [18, 20], illustrating
that the present calculations are quite reliable. In Fig. 4,
valence and conduction bands cross the Fermi level, so
HfZn2 is a metal.

Fig. 4. Electronic band structure of HfZn2 at 0 GPa
along the high symmetry directions in the Brillouin
zone.

Fig. 5. Total and partial electronic density of states of HfZn2 at different pressures. The yellow dashed lines represent
the position of the Fermi level. (a) 0 GPa, (b) 10 GPa, (c) 100 GPa.
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The total densities of states (TDOS) and their corre-
sponding partial densities of states (PDOS) of Hf and
Zn atoms at 0 GPa are depicted in Fig. 5a. Based on
the TDOS and PDOS, the lower energy band located at
–8.0 eV to –6.0 eV are mainly composed of Hf 6s and
Zn 3d states with a little contribution from Hf 5d, Hf 5p
and Zn 4s states, The energy bands of –6.0 eV to 0 eV
are mainly made of Hf 5d, Hf 5p, Zn 4s states. More-
over, we also present its TDOS and PDOS at 10 GPa
and 100 GPa in Fig. 5b and c, respectively, to investi-
gate the pressure effect on the electronic properties. As
is shown, the tendency that the TDOS at the Fermi level
(N(EF )) decrease with pressure is distinct (9.638, 8.672,
and 4.659 for pressure from 0 to 100 GPa. This phe-
nomenon shows that the stability of HfZn2 gets stronger
under pressure and there are similar conclusions in other
electronic structure studies [45, 46], which show that low
N(EF) is associated with higher stability.

In order to elucidate the bonding characteristic of
HfZn2, we present their valence charge density in Fig. 6a,
where the blue and the red represent a low and high con-
centration of electrons, respectively. It can be clearly
seen that the highest electric charge density occurs in
the immediate vicinity of the nuclei, while the interstitial
electric charge densities are relatively low. This means
that most of the electrons are firmly bound up around
the atomic nuclei and only a few valence electrons can
escape from their bondage. Hence, there is no covalent
bond in HfZn2. We also plot the charge density differ-
ence in Fig. 6b to obtain the qualitative perspective on
the extent of charge transfer accompanying the forma-
tion of HfZn2 compounds. It is based on the following
equation [47]:

δρ = ρ(HfZn2)− ρ(Hf)− ρ(Zn), (8)
where ρ is the valence-electron charge density. In Fig. 6b,
we find the loss of charge from the Hf and Zn cores is re-
distributed into the interstitial region. This suggests that
the interstitial charge is well delocalized to form metallic
bond.

Fig. 6. The valence charge density distribution (a) and
charge density difference (b) (in units of e/Å3) plot for
HfZn2 computed in the (001) plane.

3.4. Vibrational properties

The vibrational properties play an important role in
determining physical properties of solids, such as dynam-
ical stability, phase transition, anisotropic atomic dis-
placement parameters (ADPs). The predicted phonon
spectrum along the high symmetry direction, total and
partial densities of phonon states (PHDOS) of HfZn2 at
0, 10, and 100 GPa are depicted in Fig. 7, which are

Fig. 7. Phonon dispersion curves and phonon density
of states for HfZn2 compounds along several lines of high
symmetry in the Brillouin zone at 0, 10, and 100 GPa,
respectively.

used to examine their dynamical stability at different
pressure. It is easy to find from Fig. 7 that HfZn2 is
dynamically stable up to 100 GPa, since no imaginary
phonon frequency is observed throughout the Brillouin
zone at 100 GPa. Though there are no other theoreti-
cal calculations or experiments for the phonon of HfZn2,
the stability conclusion is consistent with that from the
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elastic constant calculations. The six atoms contained in
the primitive unit cell of HfZn2 can give rise to a total
of 18 phonon branches, which include 15 optical modes
and 3 acoustic modes. However, this number is reduced
by mode degeneracies in the different directions of the
Brillouin zone. All the phonon branches move to higher
frequency range accordingly with the increasing pressure.
At 0 GPa, the PHDOS curves of HfZn2 can be divided
into two distinct regions. The low frequency region de-
rives from hybridization between Hf and Zn atoms, but
high frequency region primarily results from Zn atom.
It is noted that the peak of PHDOS of Hf gradually
gets shark with the increasing pressure, indicates that
the difference of vibrational frequencies between Hf and
Zn atom gets more obviously at high pressure.

Phonon modes at the Brillouin zone center are of fo-
cus in the lattice dynamics of solids. According to the
irreducible representations of group theory, the optical
phonon modes of HfZn2 at the Gamma point can be de-
composed as

Goptical = T2u(IN) + T1u(IR) + Eu(IN)

+T1u(IR) +A2u(IR) + T2g(R), (9)
where IR, R, and IN indicate the infrared, Raman and in-
active silent modes, respectively. As we all known, the T
vibration is threefold degenerated while E and A vibra-
tions are doubly and singly degenerated modes, respec-
tively. Besides, the subscripts u and g represent sym-
metric mode and antisymmetric mode in antisymmetric
center. The obtained frequencies at Gamma point are
2.650, 3.225 3.717, 4.576, 6.054, and 8.296 in units of
THz for T2u, T1u, Eu, T1u, A2u, and T2g, respectively.
To the best of our knowledge, there are no experimental
and theoretical data available for our comparison. Re-
ferred to the vibrational analysis for cubic Laves struc-
ture Al2Ca and Al2Mg [48], similar conclusions can be
obtained. T2u, Eu, and A2u modes at Gamma point
only include atomic vibrations of Zn atoms, while T2g
modes only include atomic vibrations of Hf atoms, but
T1u modes include atomic vibrations of Zn and Hf atoms.

3.5. Thermodynamic properties
After we obtained the phonon density of states (PH-

DOS), we investigated the thermodynamic properties
of HfZn2 by means of quasi-harmonic approximation
(QHA) [49] through the PHONONPY package. For QHA
calculation, force constants were performed on 13 vol-
ume points by changing the optimized lattice parameter
a0. The phonon contribution to the Helmholtz energy
A(V , T ) can be calculated by

A(V, T ) =
1

2

∑
q,v

~ωq,v

+kBT
∑
q,v

ln(1− exp(~wq, v/kBT )), (10)

where q and v are the wave vector and band index,
respectively, ωq,v is the phonon frequency at q and
v, T is the temperature, kB and ~ are the Boltz-
mann constant and the reduced Planck constant, re-
spectively. We assume that the total Helmholtz energy,

F (V, T ) = E + Aph(V, T ), where E is obtained as total
energy of electronic structure at constant volume, and
neglect contributions from electronic excitation, anhar-
monic vibrations, and other temperature-dependent ef-
fects. Then, the Gibbs free energy G(T, P ) at given
temperature T and pressure P can be calculated from
the Helmholtz free energy F (T, V ) through the following
formula: G(T, P ) = minV (F (T, V ) + PV ). Using data
F (T, V )− V , we fit them to the Vinet equation of state
(EOS) and obtained related thermodynamic parameters,
such as the Gibbs free energy G, volumetric thermal ex-
pansion coefficient α, heat capacity at constant pressure
Cp and bulk modulus B.

In order to compare our results from QHA with the cal-
culated values through the Debye–Slater mode by Sun
et al. [19], we also conducted the calculation of quasi-
harmonic Debye modes [50, 51] for HfZn2, such as the
Debye–Slater mode, the Debye–Grüneisen mode and the
Debye–Einstein model. The details of the different quasi
harmonic Debye mode calculation are not discussed here.

Fig. 8. (a) Temperature dependences heat capacity of
HfZn2 at zero pressure from calculation and experi-
ment [16], (b) temperature dependences heat capacity
of HfZn2 at different pressure from QHA calculation.
The inset in (a) is a magnified section of zero-pressure
heat capacity of HfZn2 in the temperature range from
0 to 15 K.
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In Fig. 8a, we find that the heat capacity at constant pres-
sure (Cp) from QHA matches with the experimental re-
sults quite well at low temperatures. This also shows that
QHA is a successful theoretical method in the predic-
tion of thermodynamic properties. The Cp based on the
Debye–Einstein model can also give a satisfying result.
However, the Cp calculated from the Debye–Slater and
the Debye–Grüneisen models have a bigger discrepancy
with the experimental results at 10 K to 15 K. As a whole,
the obtained Cp through the Debye–Einstein model is
close to the result of QHA, except in the high tempera-
ture region. Figure 8b shows that the Cp under differ-
ent pressure increases very rapidly and proportionally to
T 3 with the elevated temperature below 200 K, which
obeys the Debye law. When the temperature is above

Fig. 9. Temperature and pressure dependence of bulk
modulus B, the Grüneisen parameter γ, and thermal
expansion α are represented in (a), (b), and (c), respec-
tively.

500 K, the Cp ascends slowly approaching approximately
the Dulong–Petit limit with the temperature changing,
where the influence of pressure gets smaller. Since the
QHA calculation is more reliable, other thermodynamic
quantities obtained by QHA are only shown.

The bulk module B at 0 K and 0 GPa from the QHA is
106.51 GPa just little smaller than the value 110.78 GPa
from the previous fitting and 108.31 GPa from the elastic
constant calculations. All bulk moduli B at the different
pressures decrease slightly with the temperature ascend-
ing in Fig. 9a. Figure 9b shows that the temperature
has prominent influence on the Grüneisen parameter γ
in the low temperature region, but the influence of pres-
sure on γ can be ignored in the high pressure region. The
thermal expansion coefficient α is depicted in Fig. 9c. It
is obvious that α is insensitive to high temperature and
high pressure, and the value of α at 0 pressure is much
greater than those at other pressures.

4. Conclusions
We have calculated the structural, elastic, electronic,

vibration properties and thermodynamic properties for
HfZn2 compounds by first-principles. Our results for
equilibrium lattice parameters, bulk modulus and band
structure are consistent with the previous calculated and
experimental results. We show that HfZn2 is mechani-
cally stable up to 100 GPa according to the elastic stabil-
ity criteria and phonon calculation. The obtained Debye
temperature based on elastic constant method matches
with the measurement quite well. Valence charge den-
sity and difference charge density indicate that HfZn2
compound is mainly made up of metallic bond. Phonon
dispersion of HfZn2 is calculated at different pressures.
Through QHA, the temperature and pressure depen-
dences of heat capacity at constant pressure, bulk mod-
ulus, and thermal expansion coefficient have been dis-
cussed and compared with the results adopted quasi-
harmonic Debye modes.
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