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The laws of Maxwellian electrodynamics are used in an analysis of the structure of the 4-potential of radiation
fields. The paper examines multi-particle and single-particle effects of a radiating source. Causality of electro-
magnetic processes is an important element of the analysis. Covariance properties of the relevant variables are
examined and the apparent non-covariance of the radiation 4-potential where A0 ≡ 0 in all frames is explained. It
turns out that the origin of this feature stems from the multi-charge properties of radiation. It is also shown how in
every Lorentz frame one can use covariant properties of radiation fields and reconstruct an appropriate 4-potential.
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1. Introduction

The main objective of this work is to apply well known
laws of Maxwellian electrodynamics and derive a self-
consistent expression for the 4-potential of radiation.
This expression satisfies two primary requirements of
classical electrodynamics: the electromagnetic fields are
the 4-curl of a 4-potential and the primary quantities un-
dergo a self-consistent Lorentz transformation.

It is well known that electromagnetic radiation is de-
rived from the vector potential A (see [1], p. 184 or [2],
p. 391). It means that the 0-component of a 4-potential
A0 vanishes for radiation fields and that this property
holds for every Lorentz frame. Consequences of this
aspect of the radiation 4-potential have already been
pointed out in the literature. For example, Weinberg
states in his textbook (see [3], p. 251): “The fact that
A0 vanishes in all Lorentz frames shows vividly that Aµ
cannot be a four vector.” An analogous statement can be
found on p. 339, where he says: “...the Aµ(x) transforms
as a four-vector only up to a gauge transformation” (here
x denotes the four space-time coordinates). Indeed, the
need for a gauge transformation is yet another proof of
the claim that Aµ(x) does not transform as a 4-vector
simply because, by definition, a genuine 4-vector trans-
forms as a 4-vector without the need for a correction
trick.

This case is an example of a general mathematical the-
orem stating that if a specific component of a tensor
vanishes for all transformations then all components of
this tensor vanish identically. This theorem can be easily
proven for a 4-vector where A0 = 0 in all frames. Thus,
assume that the theorem is incorrect and that there is a
specific frame where the 4-vector is

Aµ = (0, a, 0, 0), (1)
where a 6= 0. The metric is diag (1,–1,–1,–1) and units
where the speed of light c = 1 are used. Greek indices
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run from 0 to 3 and the summation convention holds for
a pair of upper and lower indices. Unless stated to the
contrary, Latin indices run from 1 to 3. Consider the
following Lorentz transformation:

Lµν =


γ β 0 0

β γ 0 0

0 0 1 0

0 0 0 1

 , (2)

where γ, β take real values, γ > 1, β 6= 0 and
γ2 − β2 = 1 (3)

(see [1], p. 9 or [2], p. 516). Applying the Lorentz trans-
formation (2) to the 4-vector (1) one obtains

A′
µ = (aβ, aγ, 0, 0). (4)

Hence, contrary to the primary assumption, A′
0 6= 0 in

the new frame. An analogous proof holds for cases where
A2 6= 0 or A3 6= 0. This outcome completes the proof.

It is interesting to point out that covariance problems
with the 4-potential are also found in the quantum the-
ory where the canonical momentum associated with A0

vanishes identically. Thus, it is stated that “it is at this
point that we sacrifice manifest covariance. . . ” (see [4],
p. 71).

The main objective of this work is to show the reason
for this outcome and to explain why, in spite of it, the
Lorentz covariance is conserved in Maxwellian electrody-
namics.

Multi-charge and single charge attributes of a radiat-
ing system are presented in the second and in the third
sections, respectively. The fourth section shows how one
can use covariant properties of electromagnetic fields and
construct an acceptable 4-potential. The work is summa-
rized in the last section.

2. Multi-charge properties of radiation fields

As stated in Introduction, the discussion relies on
the well known laws of Maxwellian electrodynamics.The
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Lienard–Wiechert 4-potential of a charge q is (see [1],
p. 174 or [2], p. 656):

Aµ = q
vµ

Rαvα
. (5)

Here Rα denotes the 4-vector from the retarded space-
time position of the charge xαq to the field point xα and
vα is the retarded 4-velocity of the charge. The electric
and the magnetic fields of the charge q are the 4-curl of
the 4-potential (5) (see [1], p. 65 or [2], p. 550):

Fµν = Aν,µ −Aµ,ν . (6)
Here the fields tensor is (see [1], p. 65 or [2], p. 550):

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (7)

Explicit expressions for the fields of (5) can respectively
be written as a sum of two terms (see [1], p. 175 or [2],
p. 657):

E = q
1− v2

(R−R · v)3
(R− vR)

+
q

(R−R · v)3
R× [(R− vR)× a] (8)

and
B = R×E/R. (9)

Here R is the 3-vector that is related to Rµ and v and
a denote the charge’s retarded velocity and acceleration,
respectively. The first terms of (8) and of (9) are called
velocity fields and the second ones are called acceleration
fields.

The flux of electromagnetic energy is represented by
the Poynting vector (see [1], p. 81 or [2], p. 237):

S = E ×B/4π. (10)
Relying on the inverse square law, one finds from the
expression on the right hand side of (10) that radiation
fields decrease like 1/R. It is clear that as the distance R
increases the first term of (8) decreases like 1/R2 whereas
the second term decreases like 1/R. Therefore, the first
term of (8) and of (9) can be ignored at the radiation
zone and the second terms of these expressions are the
origin of radiation. The Poynting vector (10) has co-
variant properties because it is the T 0i components of
the energy-momentum tensor Tµν of the electromagnetic
fields (see [1], p. 87 or [2], p. 605).

The three expressions (5), (8) and (9) abide by the
principle of causality. Here one can see how properties of
a charge q at the retarded space-time point xµq produce
electromagnetic effects at the field space-time point xµ.
Furthermore, the calculation of the retarded point of each
charge (see [2], p. 655) shows that electromagnetic effects
propagate at the speed of light.

It is interesting to point out another property of the
4-potential (5) and of the associated fields (8), (9). The
expression for the fields consists of two terms which per-
tain to bound fields and radiation fields, respectively. On

the other hand, one and the same 4-potential is used for
the two kinds of fields. This feature explains why an
analysis of radiation effects cannot be restricted to the
4-potentials but must also treat the fields (8), (9).

Let us examine the radiation emitted from the device
depicted in Fig. 1A. Here the circle is embedded in the
(x, y) plane and the point P is located on the z-axis at
the radiation zone. The rotating charge q accelerates
towards the circle’s center. Therefore, its acceleration
fields do not vanish identically and the second terms of
(8) and of (9) show that radiation fields exist at point P .

Fig. 1. Two radiating systems. (A) A charge q moves
uniformly along a circle. (B) Two equal charges move
uniformly along a circle (See text.).

Now let us turn to the device depicted in Fig. 1B. Here
are two equal charges q1 = q2 = q which are located at
two antipodal points of the circle. The charges rotate
along the circle with the same velocity as that of the
charge q of Fig. 1A. Due to the antipodal position of
the rotating charges, one finds that at every instant the
values of the velocity and of the acceleration of the two
charges satisfy v2 = −v1 and a2 = −a1. Similarly, for
the point P the retarded time of q1 equals that of q2.

Substituting these values in the second term of (8),
one finds that in the case of Fig. 1B, the overall radia-
tion field at point P vanishes. One can also arrive at this
conclusion from a general consideration. The system of
Fig. 1B is invariant under a reflection of the (x, y) co-
ordinates. Hence, the (x, y) components of the electric
and of the magnetic fields at point P vanish. Since the
electromagnetic fields of radiation are perpendicular to
the direction of the radiation, one finds that at point P
there is no radiation. A comparison between the two ex-
periments depicted in Fig. 1 indicates that radiation is
not a single particle property.

One can also push the effect to the extreme and exam-
ine the current that flows along a closed loop of a super-
conducting material or that of a direct current that is
produced by a battery. Here charges accelerate but the
system is time-independent. Therefore, no radiation is
emitted by a system of this kind (see [1], p. 116).

A minor modification of Fig. 1B provides an alterna-
tive argument that proves the multi-charge property of
radiation. Here the sign of the second charge is q2 = −q1.
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As stated above, the acceleration of q2 is a2 = −a1. The
opposite sign of the charge and of its acceleration means
that at point P the strength of each of the radiation fields
E, B doubles. Using the Poynting vector (10), one finds
that the intensity of the radiation energy is four times
greater that that of the radiation of Fig. 1A. Hence, also
in this case one sees that radiation energy is not an arith-
metic sum of the expression of the single-particle radia-
tion terms.

Another argument that shows the multi-charge prop-
erties of radiation is the fact that there is no acceleration
in a closed system which is made of a single charge.

The foregoing discussion shows that radiation is a
multi-charge effect that is produced by all charges which
compose the source.

3. Single charge properties of the 4-potentials

Let us return to the Lienard–Wiechert 4-potential (5).
This expression determines the contribution of a single
charge q. Due to the linearity of the Maxwell equations,
one may sum the contribution of all charges and obtain
an expression for the total 4-potential of the system

AµTotal =
∑
i

qi
vµi

Riαvαi
, (11)

where the index i runs on all charges of the radiating
system.

The purpose of the analysis carried out in this work is
to find out properties of electromagnetic radiation. As
shown in Sect. 2, these properties pertain to the fields
(8), (9) which are derived from the 4-potential (5). An
observation of (11) shows clearly that the fields which are
obtained from the 4-curl of this 4-vector depend on the
retarded variables of each charge. (A calculation of these
fields can be found on p. 10 of [5].) As a matter of fact,
details of this calculation are not required here, because it
is enough to realize that for different charges the retarded
4-velocity and its associated retarded 4-acceleration gen-
erally take quite different values. Furthermore, the re-
tarded time of any two charges is generally not the same,
because each charge moves at the source’s region along
its own world line. For this reason, one must separately
differentiate each term that stands on the right hand side
of (11). This conclusion shows a single particle property
of a radiating system of charges.

Let us examine the Lorentz transformations of the
Lienard–Wiechert 4-potentials (11). Evidently, each
term i of the right hand side of (11) takes the form
of the 4-vector vµi multiplied by the charge qi which is
a Lorentz scalar and divided by Riαv

α
i which is also a

Lorentz scalar. Hence, by general laws of tensor algebra,
the left hand side of (11) is a 4-vector. However, for a
given field point xµ, each charge has its own retarded
time, and at this instant, its 4-velocity is multiplied by
a positive or a negative charge and divided by a spe-
cific scalar. Furthermore, it is pointed out in the second
section that in order to extract the radiation component

of the system, one must examine the fields (8) and (9)
which are the 4-curl of the 4-potential. It follows that in
order to preserve the possibility of taking the 4-curl of the
4-potentials (11), the Lorentz transformation should be
applied to the individual terms that stand on the right
hand side of (11). For this reason, a single term that
stands on the left hand side of (11) cannot be used as a
4-potential because a derivation of the fields is obtained
from the 4-curl of the individual terms that stand on the
right hand side of (11). This operation depends on the
specific values of the retarded velocity and the retarded
acceleration of each charge.

The right hand side of (11) also shows how the principle
of causality works in the case of radiation fields. Here
physical properties of each charge at its specific instant
in the past contribute to an effect which takes place in the
present at a laboratory space time point xµ. Evidently,
the retarded variables of each charge of the system make
their own contribution.

This section explains why a single 4-vector cannot de-
scribe properly the 4-potential of radiation fields.

4. Covariance of an effective 4-potential
for radiation fields

It is important to emphasize the significant role of the
electromagnetic fields and of their 4-potential in a de-
scription of the electromagnetic part of a given system.
For this purpose let us examine the electromagnetic terms
of the Lagrangian density (see [1], p. 75 or [2], p. 596):

LEM = − 1

16π
FµνFµν − jµAµ, (12)

where jµ denotes the 4-current of the electric charge.
This expression proves that the first term shows how
the fields tensor Fµν describes the existence of an elec-
tromagnetic entity and the second term shows how this
entity is measured by means of the coupling of its 4-
potential Aµ with the 4-current jµ of an electric charge.
A corresponding expression is used for quantum fields
(see [3], p. 349 or [6], p. 78), and in the case of a Dirac
particle the charge’s 4-current is jµ = eψ̄γµψ (see [3],
p. 355 or [6], p. 50).

Conclusion: Both the fields and their 4-potential are
required for a description of the behavior of an electro-
magnetic system.

Radiation energy (a photon in a quantum parlance) is
an objective electromagnetic entity. However, the discus-
sion of the previous section explains why a single term
cannot describe covariantly the 4-potential of radiation
fields. Due to the non-covariance of the radiation 4-
potential which is proved above, it is required to con-
struct an effective 4-potential that will be used in theo-
ries that are derived from the variational principle in gen-
eral, and in quantum theories in particular. Evidently,
for every given Lorentz frame, this 4-potential must be
consistent with the fields.
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Let us examine the Lorentz invariants of the electro-
magnetic fields (see [1], p. 68)

Inv1 = B2 − E2 (13)
and

Inv2 = E ·B. (14)
An examination of the radiation term of the electromag-
netic fields (8) and (9) indicates that these invariants
vanish for radiation fields emitted from a specific source.
This result is also obtained from (66.3) of [1], p. 185.
Furthermore, the Poynting vector (10), which shows the
direction of the fields’ momentum density, proves that ra-
diation fields are perpendicular to the direction of prop-
agation. These properties hold for every inertial frame
and for this reason they represent a covariant property
of radiation fields. They are written here for a further
reference

E ⊥ B, E ⊥ p, B ⊥ p, (15)
where p denotes the Poynting vector.

The covariance of (15) helps us understand the rela-
tivistic meaning of the standard 4-potential of radiation
fields. Here the 4-potential is not a 4-vector which is
defined in terms of the retarded quantities of the source
but it is reconstructed in every Lorentz frame by means
of covariant fields that are measured at the laboratory. It
is shown below how relations (15) are used in a construc-
tion of a specific expression for the required 4-potential.
In particular, this 4-potential satisfies A0 ≡ 0 in every
Lorentz frame.

Let us assume that at the laboratory the radiation
propagates parallel to the z-axis and examines its Fourier
component exp(i(kz − ωt)), where its wavelength is λ =
2π/k. Taking advantage of the following property of the
radiation zone:

λ� R, (16)
where R denotes the distance from the laboratory point
xµ to the radiation source (see [2], p. 392), one may re-
gard the radiation at the laboratory as a plane wave.

This discussion boils down to the following expression
for the Fourier component of the 4-potential of the radi-
ation which is polarized in the x-direction:

A(z, t) = (Ax exp i(kz − ωt), 0, 0). (17)
Here only the x-component of the vector potentialA(z, t)
does not vanish and it is parallel to the electric field E.
An analogous expression holds for a wave which is polar-
ized in the y-direction. Unlike the Lienard–Wiechert 4-
potential (5) which depends explicitly on retarded quan-
tities, the radiation potential (17) depends on quantities
at the field point xµ and has no explicit dependence on
retarded quantities of individual charges at the source.
The explicit dependence of the potential (17) on local
space-time coordinate shows that it is suitable for the ex-
pression that describes the charge-fields interaction (12).

The results of this section can be summarized in the
following words. The electromagnetic fields (7) transform
covariantly. Furthermore, the perpendicularity relations
(15) of radiation fields are covariant properties. There-

fore, covariant attributes of the 4-potential are seen if it
is not regarded as an independent 4-vector but as a quan-
tity that is reconstructed in every frame on the basis of
covariant fields.

5. Conclusions

The following points summarize the results of this
work.

• Interference of electromagnetic fields proves that
the radiation emitted from a system is a multi-
charge effect where every charge makes its own con-
tribution.

• At every field point, each charge has its own 4-
potential which is determined by the Lienard–
Wiechert expression (5).

• Each charge makes its own contribution to the in-
terfering fields. These fields depend on the re-
tarded velocity and the retarded acceleration of the
charges at the source.

• Each charge has its own retarded velocity and ac-
celeration. Therefore, the fields are obtained from
a separate calculation of the 4-curl of the retarded
4-potential of each charge. Only after this task is
accomplished these fields are summed up and spe-
cific interference effects are obtained.

• The separate treatment of the 4-potential of each
charge shows how the principle of causality works
for electromagnetic radiation.

• A single covariant term that is the sum of the 4-
potentials of the charges cannot be used for deriv-
ing the fields because of the different values of the
retarded velocity and acceleration of the charges.

• A Lorentz transformation of the 4-potential should
be separately performed for each term that stands
on the right hand side of (11). This requirement
stems from the dependence of the fields on the re-
tarded velocity and on the associated acceleration
of each charge.

• An effective expression for the 4-potential can be
constructed in a covariant form. Here the covari-
ance of the fields shows that this 4-potential can
be reconstructed in every Lorentz frame. The 0-
component of this 4-potential vanishes identically.

This work shows the interrelations between the global
effect of radiation and the contribution which is made
by individual charges. The 4-potential and its associ-
ated fields are obtained from a separate calculation of
the dynamics of each charge and only after this task is
finished the fields are summed up and yield the appropri-
ate interference effects. For every frame, an acceptable
4-potential (which is not a 4-vector) can be constructed
from covariant properties of radiation fields.
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