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Phonon–plasmon interaction in inhomogeneous piezosemiconductor embedded with a nanoparticle cluster is
examined using hydrodynamic model of plasma and macroscopic model of piezoelectric media. Present work dealt
with the extensive investigation of acoustic wave amplification characteristics. The effects of density gradient δ
and non-dimensional parameter l related to nanoparticle cluster on acoustic gain have been studied with varying
medium electron density n0e, wave frequency ω and velocity ratio ϑ0/ϑs. The results so obtained, infer that the
varying inhomogeneity and presence of nanoparticle cluster within the semiconductor plasma medium play decisive
role in depicting the gain characteristics of acoustic wave.
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1. Introduction

Nanostructures and nanotechnology are one among the
recent revolutionary developing fields of science and engi-
neering. The ongoing research in this field is very relevant
and is expected to substantially expand to competitively
contribute to the solution of many grand challenges.
They occupy the centre of scientific interest due to their
extra ordinary optical and electrical properties [1–3] as
they are small enough to confine their electrons. This
confinement of electrons in nanosized structures provide
one of the most powerful and versatile means to control
the electrical, optical, magnetic and thermoelectric prop-
erties of solid state functional materials. Even their pres-
ence within a material matrix is expected to be responsi-
ble for modifications in basic properties of bulk material.

In past couple of decades, the study of atomic and
electronic properties of nanoparticles embedded within
a GaAs matrix or within some other semiconductor ma-
trix has caught the attention of material scientists. There
were several theoretical as well as experimental reports on
the growing mechanisms and some remarkable modifica-
tions in physical and chemical properties of such materi-
als [4–9]. Using In0.53Ga0.47As containing ErAs nanopar-
ticles, Kim et al. [4] through their experimental and theo-
retical studies have demonstrated that the atomic substi-
tution in alloys can efficiently scatter phonons, thereby
reducing the thermal conductivity and correspondingly
increasing thermoelectric figure of merit in crystalline
solids. They concluded that while point defects in alloys
efficiently scatter short wavelength phonons, the ErAs
nanoparticles provide an additional scattering mecha-
nism for the mid-to-long wavelength phonons.
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Zide et al. [5] have grown composite epitaxial materials
that consist of semimetallic ErAs nanoparticles embed-
ded in a semiconducting In0.53Ga0.47As matrix. They
found that the presence of these particles increases the
free electron concentration in the material while main-
taining relatively high mobilities. The Seebeck coeffi-
cients measured for several sample structures are in rea-
sonable agreement with experimentally observed values.
They suggested that embedded metallic nanoparticles in
a semiconductor matrix can serve as a building block for
creating efficient thermoelectric materials. Kawasaki et
al. [6] have examined the atomic and electronic structures
of ErAs nanoparticles embedded within GaAs matrix via
cross-sectional tunneling microscopy and spectroscopy.
They found that the local density of states exhibits a fi-
nite minimum at the Fermi level demonstrating that the
nanoparticles remain semimetallic despite the predictions
of previous models of quantum confinement in ErAs.

Schultz and Palmstrom [7] have grown ErAs on GaAs
surfaces that occurred by an embedded growth mode.
They have shown that the surface morphologies obtained
from their growth mode depend on structural differ-
ences, thermodynamics and diffusion. Lung and Mari-
nescu [8] developed a phenomenological theory for cross
plane transport in a semiconductor superlattice doped
with nanostructures to study the improvement in the
thermoelectric properties. They have reported about
20% increase in the value of the thermopower measured.

A theoretical analysis on thermoelectric figure of merit
enhanced by nanostructuring of thermoelectric materials
was presented by Choudhary [9]. He has reported sig-
nificant modifications in all thermal parameters of the
system due to embedded nanoparticles. Even though
majority of these works are confined to thermoelectric
properties of these materials, they suggest that nanopar-
ticle embedded semiconductor matrix is a very interest-
ing medium to be studied in detail. This type of media
is now becoming friendlier to technologists because of
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its utility in processing of new materials; those are use-
ful in fabrication of improved devices. But, we found
that the study of wave particle interactions in these me-
dia is still untouched. Based on this, in some of our
previous reports, we have investigated electron–electron
two-stream interactions in homogeneous semiconductor
(n-GaAs) plasma embedded with single nanoparticle [10]
and assembly of nanoparticle cluster [11]. We found that
the presence of nanoparticles interestingly modifies the
two-stream space charge gain characteristics within the
homogeneous semiconductor plasma medium.

If an acoustic wave propagates through semiconductor
plasma medium, it may interact with various elementary
excitations. One of these excitations is plasmon and its
interaction with conduction electrons is of considerable
interest. In such an interaction the acoustic wave may
lose or gain energy under certain physical conditions.
The former process is known as attenuation and latter as
amplification of acoustic wave. The possibility of acous-
tic amplification has been first realised in piezoelectric
semiconductor by applying a dc electric field [12]. When
electron drift induced by external electric field exceeds
the sound velocity (i.e., ϑ0 > ϑs), the acoustic wave am-
plification occurs due to phonon emission by carriers [13–
15]. Motivated by this, a number of researchers worked in
this direction and explored various methods of acoustic
amplification in different semiconductors [16–18].

We know that, under crossed field configurations, com-
plete homogeneity of a semiconductor system cannot be
achieved. Otherwise, also the inhomogeneity may be
induced in any semiconductor material by non-uniform
doping or by exposing it to non-uniform radiation. It is
very difficult to grow a complete homogeneous semicon-
ductor experimentally. Now, if the system has gradients
of different physical parameters of the medium, a plasma
current or a particle drift exists; otherwise in the pres-
ence of electric field the gradients enhance the particle
drift. As we have discussed above, this particle drift is
the only parameter which actually decides the amplifica-
tion/attenuation of the acoustic wave while propagating
through a semiconductor medium. Recently, many inves-
tigators have reported their efforts of investigating acous-
tic wave amplification in homogeneous [19–21] as well
as inhomogeneous [22–25] semiconductor plasma medium
under several physical regimes and field geometries.

We found that the problem of how carrier density
gradient and presence of nanoparticle cluster influence
phonon–plasmon coupling and resultantly, the gain char-
acteristic of the acoustic wave in presence of nanoparticle
cluster within an inhomogeneous semiconductor has not
been reported yet. Hence, in the present report we have
discussed our study on the possible signature of density
gradient and assembly of nanoparticle cluster on phonon–
plasmon interactions in a wide band gap piezoelectric
semiconductor (n-CdS) plasma medium embedded with
nanoparticle cluster. We hope that this report may be
the very first attempt in this direction.

2. Theoretical formulation

When a piezoelectric semiconductor doped with a clus-
ter of nanoparticles is imposed upon by an external dc
electric field, the free electrons from conduction band of
the semiconductor acquire drift velocity in opposite direc-
tion to that of applied electric field, whereas the electrons
present in the cloud of the nanoparticle cluster are dis-
placed from their equilibrium position. As per fluid dy-
namics, the displacement velocity of electron cloud adds
vectorially with drift velocity of free electrons of semi-
conductor and results into an average velocity of elec-
tron. On the other side, because of the resulted restoring
force due to displacement in electron cloud of nanopar-
ticle cluster, these electrons start collective oscillations
identical to plasma oscillations of free electrons of semi-
conductor medium. This phenomenon resulted into a
stiffer spring constant that leads to a modified plasma
frequency. From the coupled mode view point, since
the synchronism between the phonon mode and plasmon
occurs at electron plasma frequency, one may safely in-
fer that the center of interaction frequency band will be
modified because of modification in electron plasma fre-
quency. These two phenomena invoked due to the pres-
ence of nanoparticle cluster may be attributed for the
expected modifications in the amplification characteris-
tic of acoustic wave.

In order to study the effect of density gradient and
nanoparticle cluster on phonon–plasmon interaction in
n-type piezoelectric semiconductor plasma medium (n-
CdS) embedded with an assembly of nanoparticle clus-
ter, we consider that this nanoparticle cluster has par-
ticle number density N , electron cloud density n0n, and
average radius of the particle r. The medium is sub-
jected to an applied electrostatic field E0 along negative
z-direction, hence the medium electrons having electron
density n0e, get drifted in positive z-direction with veloc-
ity ϑ0. We assume that this inhomogeneous semiconduc-
tor plasma medium has the density gradient ∇n0e along
z-direction.

Here, we consider that the medium belongs to cubic
symmetry group that simplifies the involved tensor com-
ponents without diluting the interaction under study. We
assumed that the sound wave is a shear wave propagat-
ing along z-axis which is (011) axis of the crystal. The
lattice displacement u of shear acoustic wave is assumed
to be only in x-direction. This geometry is appropriate
to many compound semiconductors belonging to class 31
and exhibit piezoelectricity [26]. The dielectric tensor of
this crystal class is always diagonal and isotropic.

We will use the concept of displacement vector and vec-
tor of a given point on the lattice, to describe the acoustic
wave in crystals. Now, the equation of lattice vibrations
for the considered field geometry may be written as

ρ
∂2ux (z, t)

∂t2
=
∂T13
∂z

, (1)

in which ρ is the mass density of the medium and T13 is
the component of elastic stress tensor. Since, here acous-
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tic wave propagates along a particular axis of symmetry
in a cubic crystal, one may very safely avoid the tensor
notations. Then Eq. (1) transforms into a scalar one and
may be written as

ρ
∂2ux (z, t)

∂t2
= C44

∂2ux (z, t)

∂z2
. (2)

Here, C44 is the two-index designation of the elastic mod-
ulus in cubic crystal which as per Hooke’s law determines
the relation between stress and linear deformation as

T13 = T31 = 2C44S13 = 2C44
∂ux (z, t)

∂z
. (3)

There are two other independent components C11 and
C12 which do not participate in this shear wave problem.

To derive Eq. (3), the relation between strain and lat-
tice displacement is used which may be written as

S13 = S31 =
1

2

∂ux (z, t)

∂z
. (4)

Due to piezoelectric nature of the crystals, appearance of
electric field is due to mechanical stress and vice versa.
For these piezoelectric crystals, Eq. (2) may be supple-
mented by the relation between electric field and elastic
stress given by

T13 = T31 = −βEz (z, t) . (5)
Here, β is the piezoelectric coefficient of the medium and
Ez (z, t) is the piezoelectric field. To simplify the problem
without neglecting any important observation, here we
have assumed that in our case elastic moduli and piezo-
electric coefficients are scalar everywhere.

Now, Eq. (1) can be re-written as

ρ
∂2ux (z, t)

∂t2
= C44

∂2ux (z, t)

∂z2
− β ∂Ez (z, t)

∂z
. (6)

Assuming a perturbation E1z = Ẽ1z exp
(
i (ωt− kz)

)
is

imposed on the medium, in which (ω, k) are wave fre-
quency and wave number involved. Following Steele and
Vural [27], the wave equation in an elastic piezoelectric
medium may be written as(
−ρω2 + C44k

2
)
ũx = ikβẼz. (7)

In a non-piezoelectric (β = 0) material the above Eq. (7)
represents the usual shear acoustic wave propagation
in a cubic crystal, with acoustic speed ϑs

(
=
√

C44

ρ

)
.

While for piezoelectric (β 6= 0) crystal, Eq. (7) infers that
the acoustic wave gets coupled with the electron motion
through the piezoelectric field Ẽz. The semiconductor
plasma always exhibits a tendency to screen piezoelectric
field and thereby to change the piezoelectric deformation.
This tendency actually connects the perturbations in the
semiconductor plasma medium with those of the lattice.

Using Eq. (7) and usual stress and electric displace-
ment components of cubic crystals, one obtains

D̃z = εẼz

(
1 +

β2k2

ε (−ρω2 + C44k2)

)
, (8)

where ε (= ε0εL) is the permittivity of the medium, in
which ε0 and εL are permittivity of free space and lattice
dielectric constant of the semiconductor material consid-
ered here.

Equation (7) describes the first of the interacting waves
and the corresponding total induction is expressed in
Eq. (8). The second wave is the one sustained by the
charge flux in the semiconductor nanoparticle cluster ma-
trix considered here as medium of study.

To deal with the electrokinetic mode, which is the
second wave of the interaction under study, let us as-
sume that the motion of the free electrons of the conduc-
tion band of cubic piezoelectric semiconductor plasma
medium is controlled by the hydrodynamic model of
plasmas. Now, if collisions with the lattice and diffu-
sion (thermal velocity) are taken into account, the one-
dimensional momentum transfer and continuity equa-
tions may be expressed as(

i (ω − kϑ0) + νe
)
ϑ̃1z =

(−e/m) Ẽ1z + iϑ2θ (n1/n0e) k̃, (9)(
n1
n0e

)
=

ϑ1z (k + iδ)

ω − ϑ0 (k − iδ)
. (10)

Here, δ = ∇n0e/n0e.

By solving this basic one-dimensional momentum
transfer Eq. (9) for a small harmonic perturbation in the
linear approximation, the perturbed velocity (ϑ1z) of free
electrons of the semiconductor medium under quasistatic
limit (k2C2

L � ω2, CL being the speed of light in the ma-
terial) may be obtained as

ϑ̃1z =
i(e/m)

F1(ω, k)
Ẽz, (11)

where

F1(ω, k) = ω − kϑ0 − iνe −
Dθνek

2
(
1 + iδ/k

)
ω − kϑ0

(
1− iδ/k

) ,
in which νe is the momentum transfer collision frequency
and Dθ

(
=

ϑ2
θ

νe

)
is the thermal diffusion coefficient, ϑθ

being the electron thermal velocity of the semiconductor
medium.

Now, conduction current density for free electron of
the medium is given by

J̃ = −enϑ.

Thus, first-order conduction current density may be ob-
tained as

J̃1 = −e (n0eϑ1 + n1ϑ0) .

As electric field is applied along z-direction, the conduc-
tion current density reduces to

J̃1z = −en0e
(
ϑ1z +

n1
n0e

ϑ0

)
. (12)

Using Eqs. (10) and (11) in Eq. (12), we may obtain the
conduction current density for free electrons of the semi-
conductor medium as

J̃1z = − iεω2
pe

ω + 2iδϑ0
F1(ω, k) (ω − kϑ0 + iδϑ0)

Ẽz. (13)
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Now, the motion of electrons present within the nanopar-
ticle cloud having displacement ∆ under the influence of
applied electrostatic field E0 can be described by the fol-
lowing equation of motion [28]:

d2∆

dt2
+
ω2
pn

3
∆ = −eEz (z, t)

m
. (14)

Here, ωpn =
√
e2n0n

/
mε is the plasma frequency of elec-

trons present within the cloud of nanoparticle cluster.
Again solving Eq. (14) for small harmonic perturbations
under linear approximation, we may get the velocity of
electron cloud of nanoparticle cluster as

ϑ̃np =
iω (e/m) Ẽz(
ω2 − ω2

pn

3

) . (15)

We know that the first order current density for electron
cloud of nanoparticle cluster may be expressed as

J̃np = −
4π

3
r3Nn0neϑ̃np. (16)

Combining Eqs. (15) and (16), we get that the expres-
sion for the current density related to electron cloud of
nanoparticle cluster becomes

J̃np = − iεω
4π

3
l

ω2
pn

ω2 − ω2
pn

/
3
Ẽz. (17)

Here, l = r3N is a non-dimensional physical parameter
related to nanoparticle cluster.

Using Eqs. (13) and (17), the resultant current density
J̃1 = J̃1z + J̃np in considered system becomes

J̃1 = − iε

(
ω2
pe

F (ω, k)

ω + 2iδϑ0
ω − kϑ0 + iδϑ0

+
4π

3
lω

ω2
pn(

ω2 − ω2
pn

/
3
)) Ẽz. (18)

Combining this resultant current density J̃1 (Eq. (18))
with continuity Eq. (10), the resultant space charge
density ñ1 may be deduced as

ñ1 =
iεk

e (ω − kϑ0)

(
ω2
pe

F (ω, k)

ω + 2iδϑ0
ω − kϑ0 + iδϑ0

+
4π

3
lω

ω2
pn

ω2 − ω2
pn

/
3

)
Ẽz. (19)

Substitution of Eq. (19) in Maxwell’s equation
∇ · ~D = −en1, derives the electric displacement
for free electrons of the semiconductor nanoparticle
cluster matrix and that may be expressed as

D̃z =
εẼz

ω − kϑ0

(
ω2
pe

F (ω, k)

ω + 2iδϑ0
ω − kϑ0 + iδϑ0

+
4π

3
lω

ω2
pn

ω2 − ω2
pn

/
3

)
. (20)

Comparison of Eqs. (8) and (20) yields the general dis-
persion relation for phonon–plasmon interaction in in-
homogeneous semiconductor medium embedded with a
nanoparticle cluster as

(
ω2 − k2ϑ2s

)[
1− 1

ω − kϑ0
(21)

×

(
ω2
pe

(
ω − kϑ0(1− iδ/k)

)(
ω + 2iδϑ0

)(
ω−kϑ0− iν

)(
ω−kϑ0(1− iδ/k)

)
−Dθνek2(1 + iδ/k)

× 1

ω − kϑ0 + iδϑ0
+

4π

3
lω

ω2
pn

(ω2 − ω2
pn/3)

)]
= K2k2ϑ2s.

The term in first bracket on LHS corresponds to the
usual shear acoustic mode and term in second bracket
corresponds to the plasmon mode modified due to the
presence of a nanoparticle cluster via electron cloud
plasma frequency (ωpn) and density gradient via δ term.
RHS contains the electromechanical coupling coefficient
K2
(
= β2/

C44ε

)
generated due to piezoelectric nature of

the crystal. If the medium is non-piezoelectric (β = 0),
this coupling coefficient vanishes from Eq. (21) and re-
sults in two independent modes of propagation. These
modes may be expressed as(
ω2 − k2ϑ2s

)
= 0, (22a)

1− 1

ω − kϑ0
(22b)

×

(
ω2
pe

(
ω − kϑ0(1− iδ/k)

)(
ω + 2iδϑ0

)(
ω−kϑ0− iν

)(
ω−kϑ0(1− iδ/k)

)
−Dθνek2(1 + iδ/k)

× 1

ω − kϑ0 + iδϑ0
+

4π

3
lω

ω2
pn

(ω2 − ω2
pn/3)

)
= 0.

Equation (22a) represents usual shear mechanical mode
propagation through an elastic medium and Eq. (22b)
stands for the plasma/electrokinetic mode whose usual
nature has been modified due to the presence of nanopar-
ticle cluster and density gradient within the host medium.

Following Steele and Vural [27], we have solved the de-
rived dispersion relation (Eq. (21)), under collision dom-
inated limit (νe � ω, kϑ0), using the standard approx-
imation (kϑs/ω) = 1 + iα; where α (� 1) is gain per
radian. By assuming that the spatial rate of change of
static quantity is much smaller than time varying quan-
tity

∣∣∣~δ∣∣∣ � ∣∣∣~k∣∣∣, we obtain the expression for gain per ra-
dian as

α =
1

2
K2ω3ωRγ

(
γ − δϑ0

ωD

)[(
ωγ
(
ωγ +

4π

3
lωA

)
(23)

+2ωRδϑ0

)2

−
(
Dθk

2
(
ωγ +

4π

3
lωA

)
− ωωR

)2
]−1

.

Here, γ = ϑ0/ϑs − 1, ωD = ϑ2s/Dθ, ωR = ω2
pe/νe and

A = ω2
pn/(ω

2−ω2
pn/3). The term A in Eq. (23) represents

the modification in acoustic gain due to the nanoparticle
cluster via the plasma frequency (ωpn) of electron cloud
of nanoparticle cluster. The term δ is responsible for
modification in acoustic gain due to inhomogeneity in the
medium. The sound wave is said to be amplified when
α > 0 and attenuating when α < 0.
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3. Results and discussion

Our principal aim is to present numerical demonstra-
tion of gain profiles of acoustic wave in a piezoelectric
semiconductor embedded with nanoparticle cluster and
to investigate possible signature of density gradient on it.
For this purpose, we have considered n-CdS embedded
with nanoparticle cluster at room temperature repre-
sented by the following physical parameters:
me = 0.17m0, εL = 9.35, β = 0.21 Cm−2,

µ = 0.035 m2V−1s−1 and ρ = 4820 kg m−3.

On solving Eq. (23) using these physical parameters, the
dependence of acoustic gain α on carrier density n0e,
wave frequency ω, and velocity ratio ϑ0/ϑs have been
estimated numerically and are depicted in Figs. 1–5.

Figure 1 represents the variation of acoustic gain α
with free electron density n0e in presence of nanoparticle
cluster using density gradient δ as parameter. Curves in
all the three cases infer that at low doping regime acoustic
mode is amplifying in nature. In this regime the ampli-
fication coefficient is a parabolically increasing function
of free electron density n0e. At a particular value of n0e
gain coefficient attains a maximum and then suddenly re-
duces to zero. On increasing n0e further, acoustic mode
starts attenuating sharply with increasing attenuating
coefficient. The attenuation coefficient acquires maxima
and afterwards starts reducing exponentially with elec-
tron density n0e. This propagating mode becomes stable
in highly doped medium. Thus, we may safely conclude
that moderately doped semiconductor medium is the best

Fig. 1. α vs n0e for different δ at l = 0.001.

host to achieve sound amplification. This figure also in-
fers that the amplification to attenuation crossover point
is shifted to higher values of electron density on increas-
ing the inhomogeneity parameter δ.

Figure 2 depicts the gain per radian α versus free elec-
tron density n0e character for δ = 100 at different values
of non-dimensional parameter l. It is again clear from
this figure that the low doped semiconductor medium is
favourable for amplifying acoustic mode. The amplifica-
tion coefficient enhances slowly with n0e and reaches its
peak value at n0e ≈ 5.6×1020 m−3. On further increasing
n0e, the amplification coefficient reduces sharply, crosses
zero value and then changes its character to attenuating
nature. This attenuation coefficient rapidly increases to
its maximum value at n0e ≈ 5.8×1020 m−3. With further
increase in n0e, attenuation coefficient sharply reduces to
zero to make the mode stable at n0e ≈ 6 × 1020 m−3.
Form both figures (1 and 2), it may be inferred that
on increasing the number of nanoparticles in the clus-
ter and/or the inhomogeneity in the medium, the magni-
tudes of maximum amplification/attenuation coefficients
increase/decrease.

Fig. 2. α vs n0e for different l at δ = 100.

The nature of variation of acoustic gain α against wave
frequency ω with δ as parameter for a nanoparticle clus-
ter embedded semiconductor medium is shown in Fig. 3.
In a homogeneous δ = 0 medium, the acoustic mode
is attenuating with rapidly increasing attenuation coef-
ficient that acquires maximum at ω ≈ 3 × 107 s−1. A
slight tuning at this wave frequency yields that the na-
ture of the acoustic mode is converted from decaying to
amplifying, whose amplification coefficient immediately
touches its maximum. After this value of wave frequency
the acoustic mode becomes stable. On the other hand,
for inhomogeneous medium δ 6= 0 the acoustic mode is
found to be amplifying throughout the frequency range
under study. From curves of this figure, it may also be in-
ferred that the increase in inhomogeneity shifts the peak
of the gain characteristics to higher wave frequency side,
but reduces the overall magnitude of acoustic gain.
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Fig. 3. α vs ω for different δ at l = 0.001.

Figure 4a and b depicts the plot of acoustic gain α
versus wave frequency ω in presence of the nanopar-
ticle cluster at different values of non-dimensional pa-
rameter l at δ = 100. The propagating acoustic mode
is found amplifying in the frequency range 4.2 × 106–
7.7 × 106 s−1 (Fig. 4a) and attenuating at 2 × 107–
2.4 × 107 s−1 (Fig. 4b). The maximum amplification
is obtained at ω ≈ 5.9 × 106 s−1 whereas maximum
attenuation is obtained at ω ≈ 2.3 × 107 s−1. Inter-
estingly, the propagating shear acoustic mode is found
stable in nature between these two ranges of frequencies
(7.7 × 106–2 × 107 s−1) discussed. We found that be-
yond ω ≈ 2.5×107 s−1 this mode again starts amplifying
with feeble gain constant and becomes stable afterwards.
The non-dimensional parameter l, a function of parti-
cle density in the nanoparticle cluster is found responsi-
ble in reducing the gain and increasing the attenuation
of the mode.

Figure 5 displays the variation of acoustic gain α with
velocity ratio ϑ0/ϑs in presence of nanoparticle cluster
using density gradient δ as parameter. For all values of
δ, the acoustic gain profiles have identical variations qual-
itatively with velocity ratio ϑ0/ϑs. In these profiles, ini-
tially acoustic mode is attenuating, slowly attains max-
ima at a particular value of ϑ0/ϑs and then reduces to
zero sharply. From this point onwards, this propagating
acoustic mode becomes amplifying in nature whose am-
plification coefficient reaches to maximum more or less
at the same value of ϑ0/ϑs at which we achieve maxi-
mum attenuation. If we increase the velocity ratio further
this mode becomes stable. With the increase in inhomo-
geneity in the medium, one may shift the attenuation to
amplification crossover point to lower values of velocity
ratio. This figure infers that the dependences of acoustic
gain α on varying velocity ratio ϑ0/ϑs is independent of
non-dimensional parameter l related to the existence of
nanoparticle cluster within the semiconductor medium.

Fig. 4. α vs ω for different l at δ = 100.

Fig. 5. α vs ϑ0/ϑs for different δ at l = 0.001.
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Precisely, the present study establishes that the pres-
ence of nanoparticle cluster and/or density gradient in
cubic piezoelectric semiconductor medium are responsi-
ble for significant favourable modifications in the reso-
nant interaction between acoustic phonons and plasmon
modes. It is hoped that these outcomes would be useful
in understanding the basic phonon–plasmon interaction
phenomena in inhomogeneous semiconductor medium
and tailoring the acoustic devices as per requirement.
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