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Equilibrium reduced-density operators for subsystems of the universe are derived from the generalised
Schrödinger variational principle, additionally assuming that the values of von Neumann entropy for the sub-
systems are fixed and higher than zero. The obtained reduced-density operator may be useful for description of the
properties of an arbitrary system (macroscopic, mesoscopic, nanoscopic, or microscopic) in the equilibrium mixed
state.
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1. Introduction
Usually, when investigating theoretically macroscopic

bulk systems, we do not have to take into account their
interaction with environment, regarding the short-range
character of intermolecular interactions. Any effective
interaction among the molecules of the system and its
environment could only occur through the atoms on or
near the system’s surface. The number of interacting
atoms is usually an insignificant part of all atoms of the
system. However, considering ultrathin films and sim-
ilar systems, the number of atoms interacting with en-
vironment is frequently of the same order of magnitude
as the total number of atoms in the system. Moreover,
thin films are deposited on bulk substrates whose struc-
ture affects that of the films, so the interaction between
the substrate and the film has to be taken into account.
A common procedure to realise it is to introduce phe-
nomenological surface parameters. The values of these
parameters significantly influence physical properties of
mesoscopic systems or thin films, which for example is
evidenced in their spectra of collective excitations.

For such system the postulates of the quantum statis-
tical thermodynamics (QST) are not exactly fulfilled as
this theory assumes that the effect of environment can
only be a mixing of quantum states in the system stud-
ied and it has no effect on the spectrum of eigenstates of
its Hamiltonian.

In this paper we propose a general method which takes
into account the interaction between the nanoscopic or
mesoscopic system or thin film and the substrate on a
microscopic level. In this method, the interactions are
included already in the construction of the reduced den-
sity operator. The method proposed is more general than
the QST and is an extension of the ideas presented ear-
lier [1–3].

2. Statement of the problem
Let us consider a closed quantum system composed

of N -particles in a stationary state of a fixed energy E.
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Assume that the energy of the system has been deter-
mined by macroscopic methods with an accuracy not
better than ±δE. For the sake of simplicity let us as-
sume that the system is composed of N identical weakly
interacting particles (weakly enough so that the interac-
tion does not significantly change the spectrum of states
of individual particles). Each of the particles can be in
one of Γ states, while the total energy of the system is
within the range E± δE. Thus, the number of the states
of the system can be estimated as ΓN , and the ratio of
the mean distance between the states on the energy axis
δE to the accuracy of energy measurement is

δE

δE
≈ 2

ΓN
. (1)

As follows from this estimation, the mean distance on the
energy axis between the neighbouring stationary states of
the system for which N � 1 is very small relative to δE,
so that even a minimum external disturbance can shift
the system from one state to another. Such disturbances
are always present, for instance as a result of unscreened
gravitation interactions. That is why the macroscopic
massive systems cannot be treated as isolated from envi-
ronment and thus describable in terms of quantum theory
formalism but by QST. The only macroscopic massive
system with N � 1, which can be treated as a closed and
fully isolated one is the whole universe. All other macro-
scopic bulk systems must be considered as non-isolated
so interacting with environment.

The idea of description of the universe as a closed sys-
tem in terms of quantum theory has created a quantum
cosmology. In quantum cosmology the universe is un-
derstood as the largest physical system with no external
physical reality, which can be described in the quantum
theory. In quantum cosmology attempts are made to
describe the universe in the categories of the state vec-
tors. The quantum cosmology deals with close universe
model (universe with a finite volume), because, in the
quantum theory, only such a universe can be described
consistently. The total energy of such a universe is ex-
actly zero and the state vector of the universe cannot
depend on time [4]. The positive energy of the universe
matter and dark energy is exactly compensated by the
negative energy connected with the gravitation.
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Therefore, the equation for the state vector of the close
universe |ψ〉 is

H |ψ〉 = 0, (2)
where H is the Hamiltonian of the universe.

In general, Eq. (2) has degenerate eigenvalues and the
stationary state ψ is not determined exactly by the value
of energy E, but by a set of eigenvalues of all operators
making a complete set of commutating operators with H
(CSCO).

The eigenequations for CSCO can be written as:
Q1 |q1q2 . . .〉 = q1 |q1q2 . . .〉 ,
Q2 |q1q2 . . .〉 = q2 |q1q2 . . .〉 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . ,

(3)

where CSCO = {Q1 = H,Q2, . . .}.
Introducing the matrix notation the set of Eqs. (3) can

be written in the compact form
Q |q〉 = q |q〉 , (4)

where Q represents CSCO in the form of a single-matrix
column

Q :=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Q1 = H

Q2

...

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ = {Qi}, (5)

and i = 1, 2, ... This matrix is known as the complete
matrix of operators. The matrix q represents the set of
eigenvalues of CSCO

q :=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
q1 = 0

q2

...

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ = {qi}, (6)

and is known as the complete matrix of eigenvalues. Note
that Eq. (4) has formally non-degenerate complete ma-
trices of eigenvalues. After orthogonalisation of the state
vectors |q〉, they meet the conditions

〈q|q
′
〉 = δq,q′ , (7)∑

q

|q〉〈q| = 1. (8)

Neither any specific form of the complete matrix of op-
erators Q nor a specific form of the vector of state |q〉
are relevant for us. We assume that the universe is in
the stationary state characterised by the unknown state
vector |q〉. Equation (4) is a very simple but useful gen-
eralisation of the stationary Schrödinger Eq. (2).

It can be easily shown that Eq. (4) is equivalent to
the generalised Schrödinger variational principle

δTr(Qd) = 0 (9)
with the normalization condition for the density
operator d:

Tr(d) = 1, (10)
where

d = |q〉〈q| , (11)
and the first variation of the density operator takes the

form
δd := |δq〉〈q|+ |q〉〈δq| , (12)

and is expressed in terms of the variation |δq〉 of the
state vector. Using the Lagrange method for finding the
conditional extreme of the functionals, Eqs. (9) and (10)
can be rewritten in the form

δTr
(
(Q− q)d

)
= 0, (13)

where q is the complete matrix of indeterminate Lagrange
multipliers.

The assumed stationary character of the universe im-
plies the constant in time expectation values of any ob-
servables a:
〈a〉 =

〈
q
∣∣ a ∣∣q〉 = Tr[ad]. (14)

For this reason we shall restrict our considerations to the
many-particle systems being in such an environment and
in such a state that the time changes in these systems
are irrelevant, so we shall study the systems only in the
equilibrium states.

3. Equilibrium reduced-density operator

Let us divide the universe into k arbitrary systems
j = 1, 2, ..., k in such a way that each of them would
satisfy the equilibrium condition in a good approxima-
tion. We have experienced that the presence of a many
particle system in a state which can be in a good approx-
imation treated as equilibrium is nothing unusual. It is
always possible to divide the universe into at least two
parts (k = 2): a given system j being in the equilibrium
state and the other part of the universe R. If a given sys-
tem is in the equilibrium state, its environment cannot
significantly change in time. Therefore, we can reason-
ably assume that also the other part of the universe is in
the equilibrium state.

Analysis of each specific physical problem requires a
proper, intuitively guessed, division of the universe into
k parts. Although this division is in a sense arbitrary, it
does not change the generality of our considerations.

The complete matrix of the universe operators Q can
be in general written as

Q =

k∑
j=1

Q
j

+
∑
j 6=j′

Q
jj′

+ Q̃, (15)

where Q
j
is the matrix of operators of the j-th system

and Q
jj′

is the matrix of operators describing the
interaction between the systems j and j′. Moreover

Q =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Q1jj′ = Hjj′

0

0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
, Q̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

Q̃1

Q̃2

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16)

where Hjj′ is the Hamiltonian describing the interactions
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among these systems and Q̃ is the matrix of operators of
non-additive observables of the universe.

According to Eq. (14), the expectation value of an ar-
bitrary observable aj of the system j is
〈aj〉 = Tr(ajd). (17)

The calculation of the trace in Eq. (17) can be performed
at two stages. At first we realise that the following equal-
ity holds:
〈aj〉 = Trj(ajdj), (18)

where
dj = TrR(d) (19)

is the reduced-density operator [5] of the system j and
TrR [...] is the partial trace over the states of the other
part of the universe R.

Although the universe as a whole is in the pure state
|q〉, its arbitrary macroscopic many-particle parts in-
evitably are in mixed states. This is a purely quantum
effect following from the holistic properties of the quan-
tum theory formally related to the fact that the universe
(according to the quantum cosmology postulates) has one
vector of state common for all systems and in the case
of interactions among them we are not able to specify
the vector of state for an individual system j (it may
not be the case for the interactions of the effective field
type). Such a situation does not occur in the classical
description because we can know classical trajectories of
each particular molecule irrespective of their interactions.
The holistic features of the quantum theory imply the use
of the formalism of the reduced-density operators in de-
scription of many particle systems.

The dimensionless von Neumann entropy for a system
j, defined by the equation:

sj := −Trj(dj ln dj) (20)
takes the highest value for a homogeneous distribution,
that is the one in which the presence of the system j
in any eigenstate of the reduced density operator dj is
equally probable. Such a state can be described as hav-
ing the greatest degree of state mixing. In the pure
state, without state mixing, the entropy takes the small-
est value equal to zero. Therefore, the dimensionless en-
tropy is a good, additive measure of the degree of state
mixing.

Our main assumption concerning the equilibrium state
of any system j can be expressed as
∀
j
sj = constant > 0. (21)

This postulate takes into account the fact that none bulk
macroscopic many-particle system other than the uni-
verse can be treated as closed and so all other macro-
scopic systems have to be in a mixed state.

On the other hand, this postulate may not hold for
the equilibrium systems containing a very small number
of particles, for example in ion trap, because such sys-
tems can be in a pure quantum state whose entropy is
sj = 0. Therefore, systems of a very small number of
particles can have their attributed state vectors and can
be described in terms of quantum mechanics so without

any statistical hypotheses that are beyond the quantum
theory.

We assume that when there is an interaction between
any k systems, the operator of density of the universe d
can always be expressed as

d := K
k
⊗
j=1

dj , (22)

where K is the correlation superoperator [6] acting in the
space of the reduced density operators (in general a su-
peroperator is a symbol of the mathematical operation
by which an operator is formed from another operator).
Moreover we assume that the superoperator K is not a
function of density operators, so

K 6= K(d1, d2, . . . , dk). (23)
For our considerations important is the existence of such
a superoperator and not its actual form. The existence of
such a superoperator can be proven on very simple exam-
ples. Of course it cannot be shown to exist for a certain
division of the universe into k parts. Therefore, we have
to assume the existence of the correlation superoperator
K defined by (22) and satisfying the condition (23).

Our basic assumptions on the state vector of the uni-
verse |q〉 can be expressed as the generalised Schrödinger
variation principle (13):

δTr
( (
Q− q

)
d
)

= 0 (24)

with an additional condition following from formula
(21), i.e.

sj = constant > 0 (25)
for j = 1, 2, ..., k where q is the complete matrix of
indeterminate Lagrange multipliers. According to this
requirement each of the k systems into which the uni-
verse was divided is in an equilibrium mixed state. The
variation principle (24) together with (25) express our
main assumptions.

Applying the Lagrange method for the calculation of
the conditional extremes of the functionals, we can write
these two expressions as

δ

(
Tr
((
Q− q

)
d
)

+

k∑
j=1

Ajsj

)
= 0, (26)

where Aj are the single column matrices of the indeter-
minate Lagrange multipliers.

Substituting Eqs. (15), (22) and (20) into (26) we ar-
rive at

δ

( k∑
j=1

Tr
(
Q
j
d
)

+ Tr
((∑

j 6=j′
Q
jj′

+ Q̃
)
K

k
⊗

j′′=1
dj′′
)

−qTr
(
K

k
⊗

j′′=1

dj′′
)
−

k∑
j=1

AjTrj

(
dj ln dj

))
= 0.

(27)

Taking into account the definition of the reduced-
density operator (19) and Eq. (21) we get
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k∑
j=1

(
Trj
(
Q
j
δdj

)
+ Trj

(
Q

′

j
δdj

)
−AjTrj

(
δdj ln dj + δdj

)
− qTrj

(
δdj

))
= 0, (28)

where

Q
′

j
= TrR

((∑
j′

Q
jj′

+ Q̃
)
K ⊗

j′′ 6=j
dj′′

)
. (29)

Moreover, as follows from the normalization conditions
(10), (19) and from

Tr
(
K

k
⊗
j”=1

dj”
)

= 1, (30)

δdj = δTrR
(
K

k
⊗

j′′=1
dj′′
)

= δ

(
TrR

(
K ⊗

j′′ 6=j
dj′′
)
dj

)
=

δ
(

1jdj

)
= δdj , (31)

where TrR (. . . ) is the partial trace over the states of
the universe without the system j. Then we have
k∑
j=1

Trj
((

Q
j

+Q
′

j
−Aj ln dj −Aj − q

)
δdj

)
= 0. (32)

Because of the arbitrariness of variations δdj of the
reduced density operator dj , we get

ln dj = −A−1
j q − 1 +A−1

j

(
Q
j

+Q
′

j

)
, (33)

where A−1
j is the inverse matrix of Aj , i.e.

A−1
j Aj = 1. (34)

Introducing new notation
Lj = 1 +A−1

j q, (35)

P j = −A−1, (36)
we finally arrive at the formula for the reduced-density
operator of the j-th system in the equilibrium state

dj = exp

(
− Lj − P j

(
Q
j

+Q
′

j

))
. (37)

From the normalization condition we can calculate the
indeterminate Lagrange multipliers

Lj = lnTrj
(

exp
(
− P j

(
Q
j

+Q
′

j

)))
. (38)

and putting (37) into (20) we get the following expression
for the dimensionless entropy of the j-th system:

sj = Lj + P j

〈
Q
j

+Q
′

j

〉
, (39)

where〈
Q
j

+Q
′

j

〉
=

Trj
((

Q
j

+Q
′

j

)
exp

(
− Lj − P j

(
Q
j

+Q
′

j

)))
.

Having calculated Lj from (39) and putting it into
(37) we arrive at another form of the reduced density
operator of the j-th system

dj = exp
(
− sj − P j∆Qj − P j∆Q

′

j

)
, (40)

where
∆Q

j
:= Q

j
−
〈
Q
j

〉
, (41)

∆Q
′

j
:= Q

′

j
−
〈
Q

′

j

〉
(42)

are the respective fluctuation operators.
Then, using Eq. (18), we arrive at the formula for the

expectation value of any observable of the j-th system

〈aj〉 = Trj
(
aj exp

(
− Lj − P jQj − P jQ

′

j

))
=

Trj
(
aj exp

(
− sj − P j∆Qj − P j∆Q

′

j

))
. (43)

The mean fluctuation of the non-additive observables
is equal to zero [3]. This means that the non-additive
values cannot be important. Hence, finally the general
expression for the reduced-density operator for the j-th
system is

dj = exp

(
− Lj − P j

(
Q
j

+Q
′

j

))
=

exp

(
− sj − P j

(
∆Q

j
+ ∆Q

′

j

))
, (44)

where now
Q

′

j
=
∑
j′ 6=j

TrR
(
Q
jj′
K ⊗

j′′ 6=j
dj′′
)

(45)

and

Lj = Trj
(

exp
(
− P j

(
Q
j

+Q
′

j

)))
. (46)

Putting (44) into (18) we get

〈aj〉 = Trj
(
aj exp

(
− Lj − P j

(
Q
j

+Q
′

j

)))
, (47)

where Q
′

j
is described by Eq. (45) and j = 1, 2, . . . , k.

Using this expression we are able to describe an arbitrary
physical system (macroscopic, mezoscopic, nanoscopic or
microscopic) in the equilibrium mixed state.

4. Particular cases
of the reduced-density operators

4.1. Massive macroscopic system

Let us assume that the j-th system is a massive macro-
scopic system (a system in which the number of surface
particles is negligibly small when compared to the to-
tal number of particles) composed of Nj � 1 particles.
In typical conditions, when the unscreened gravitational
interaction is not dominant, the system interacts with
its environment via short-range intermolecular forces. In
this way the j-th system interacts with its environment
only via the particles close to its surface. This means that
the interaction with environment is a very small surface
effect, which can be neglected. Thus, the reduced-density
operator (44) becomes
dj = exp

(
− Lj − P jQj

)
= exp

(
− sj − P j∆Qj

)
. (48)

In the thermodynamical limit the terms containing the
fluctuation operators are irrelevant. That is why for an
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infinitely large system we get a whole family of equivalent
reduced-density operators. However, for the finite sys-
tems, depending on the specific physical conditions of the
system j, particular components of the sum

∑
i

Pij∆Qij

(following from the matrix formalism) will bring a smaller
or greater contribution to the operator dj . Of course
it will depend on whether the observable Qij undergoes
strong or weak fluctuations. Let us consider a few simple
cases.

(i) Let us assume that the system j is very well isolated
from its environment and according to the macroscopic
energy measurements its energy varies within a very nar-
row interval. Under this assumption we can assume that
the matrix ∆Q

j
= 0, which means that we neglect the

fluctuations of all observables whose operators commute
with the Hamiltonian Hj . Thus, operator (48) takes the
form

dj = e−sj . (49)
In this case the operator dj is reduced to a real number.
Let us write this operator in the basis of eigenvectors |q

j
〉

of the complete operator Q
j
so in the basis of the vectors

satisfying the usual conditions
Q
j
|q
j
〉 = q

j
|q
j
〉 , (50)〈

q
j
|q

′

j

〉
= δq

j
,q′

j

, (51)∑
q
j

|q
j
〉〈q

j
| = 1. (52)

Not all states |q
j
〉 can be realised because the energy of

the system j varies within a narrow interval δE. There-
fore, the sum (52) can include only such states |q

j
〉 ∈ δE,

whose energy falls within this range. Thus we get

dj = e−sj
∑
q
j
∈δE

|q
j
〉〈q

j
| . (53)

This operator has to satisfy the normalisation condition
(28), so

dj =
1

wj

∑
q
j
∈δE

|q
j
〉〈q

j
| (54)

and
sj = lnwj , (55)

where
wj =

∑
q
j
∈δE

(56)

is the number of states allowed for the system j.
The reduced-density operator (54) is equivalent to the

statistical operator for the microcanonical Gibbs distri-
bution in QST. This operator has been obtained by a
different path than it is done in the statistical thermody-
namics. It has a simple form but in practice it is rarely
applied because its use requires a thorough examination
of the set of eigenstates of the system j, which is usually
very difficult.

(ii) More often used is the operator in which only the
possibility of fluctuation of the system’s j energy is con-
sidered. It means that the system j can exchange energy
with its environment. In this case operator (48) takes
the form

dj = e−sj−P1j∆Q1j , (57)
where

∆Q1j = Q1j − 〈Q1j〉 = Hj − 〈Hj〉 (58)
and Hj is the Hamiltonian of the system j.

This operator can be expressed as
dj = e−Lj−P1jQ1j = eβj(Fj−Hj), (59)

where
Lj = −βjFj , (60)

P1j = βj (61)
and from the normalization condition

Fj = − 1

βj
lnZj , (62)

Zj = Trj(e−βjHj ). (63)
The form of operator (59) is the same as that of the statis-
tical operator of the Gibbs canonical distribution in QST
for the system j, and the parameter Zj is known as the
canonical partition function. Referring to the commonly
applied thermodynamics [6, 7] for a physical interpreta-
tion of Fj and βj , we find that Fj is the free energy and
βj = (kBT )−1, where kB is the Boltzmann constant and
T is the absolute temperature.

(iii) Let us assume that the system j can exchange
not only energy but also n types of particles with its
environment. For each type of particles we can define
an operator of the number of particles Njm, where
m = 2,. . . ,n+ 1, and we moreover assume that

Njm |qj〉 = njm |qj〉 , (64)
where njm is the number of particles of type m. Under
the above assumptions the numbers of molecules are not
constant and can fluctuate, thus operator (48) takes the
form

dj = exp
(
− sj − P1j∆Q1j −

n+1∑
m=2

Pmj∆Qmj

)
, (65)

where
∆Qmj = Qmj − 〈Qmj〉 = Njm − 〈Njm〉 . (66)

This operator can be expressed as

dj = exp
(
βj
(
Ωj −Hj +

n+1∑
m=2

µjmNjm
))
, (67)

where

Ωj = − 1

βj
ln Z̃j (68)

and

Z̃j = Trj
(

exp
(
− βj

(
Hj −

n+1∑
m=2

µjmNjm
)))

. (69)
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The form of operator (67) is the same as that of the
statistical operator for the grand canonical Gibbs distri-
bution in QST and Z̃j is the grand canonical partition
function [6, 7].

The above three reduced-density operators and the
equivalent statistical operators can be applied for descrip-
tion of a majority of the massive macroscopic systems.
They make the basis of the QST. It should be noted
that they are particular cases of the generalised reduced-
density operator (44).

4.2. Microscopic exactly solvable spin systems

We have shown that for macroscopic systems in the
equilibrium state the reduced-density operator (44) leads
to the results identical with those of QST. On the exam-
ple of an exactly solvable simple microscopic system we
will show that the reduced-density operator (44) leads to
exact results.

Let us consider an isolated microscopic system com-
posed of two spins S1 and S2, described by the anisotropic
Heisenberg model (s = 1/2) whose Hamiltonian is

H =
∑
r

JrS
r
1S

r
2 , (70)

where r = x, y, z and Jx = Jy = J , Jz = J ′ are
the exchange parameters. The eigenequations for the z
component of particular spins are of the form

Sz1 |s〉1 =
1

2
}s |s〉1 , (71)

Sz2 |s〉2 =
1

2
}s |s〉2 , (72)

where s = ±1.
Solving the stationary Schrödinger equation
H |E〉 = E |E〉 , (73)

we get the following four solutions:

|E1〉 = |1〉1 ⊗ |1〉2 , E1 = }2

4 J
′

|E2〉 = |−1〉1 ⊗ |−1〉2 , E2 = E1

|E3〉 = 1√
2
(|1〉1 ⊗ |−1〉2 + |−1〉1 ⊗ |1〉2),

E3 = }2

4 (2J − J ′
),

|E4〉 = 1√
2
(|1〉1 ⊗ |−1〉2 − |−1〉1 ⊗ |1〉2),

E4 = }2

4 (−2J − J ′
).

(74)

Let us assume for example that the system considered
is in the state |E3〉. From Eq. (19) we can find exactly
the reduced density operators d̃1 and d̃2 for the first and
second spin, respectively. We arrive at

d̃1 = Tr2(d) =
1

2
| − 1〉1 1〈−1|+ 1

2
|1〉1 1〈1|, (75)

d̃1 = Tr1(d) =
1

2
| − 1〉2 2〈−1|+ 1

2
|1〉2 2〈1|, (76)

where
d = |E3〉〈E3| . (77)

Let us now calculate the reduced-density operators d1

and d2 for the first and second spin from Eq. (44). From
this equation we have

d1 = exp(−L1 − P1Q
′

1), (78)

d2 = exp(−L2 − P2Q
′

2), (79)
where

Q
′

1 = Tr2(HK12d2), (80)

Q
′

2 = Tr1(HK12d1). (81)
According to Eq. (22), the correlation superoperator
K12, is defined through the relation:

d = K12d1 ⊗ d2. (82)
We will show in the following that the set of Eqs. (78)
and (79) satisfy the exact reduced density operators d̃1

and d̃2 given by equations (75) and (76). To do this we
should use the expression

dd−1
1 = K12d2, (83)

dd−1
2 = K12d1, (84)

d1d
−1
1 = l1, (85)

d2d
−1
2 = l2. (86)

After some simple calculations we have
Q

′

1 = Tr2(Hdd−1
1 ) = E3d1d

−1
1 = E3l1, (87)

Q
′

2 = Tr1(Hdd−1
2 ) = E3d2d

−1
2 = E3l2, (88)

d1 = exp(−l1 − P1E3), (89)

d2 = exp(−l2 − P2E3). (90)
From normalization conditions we have

L1 = ln 2− P1E3, (91)

L2 = ln 2− P2E3. (92)
On the basis of Eqs. (87)–(92) and the condition of com-
pleteness we can easily prove that the following expres-
sions are true:

d1 =
1

2
l1 =

1

2

(
| − 1〉1 1〈−1|+ |1〉1 1〈1|

)
= d̃1 (93)

and

d2 =
1

2
l2 =

1

2

(
| − 1〉2 2〈−1|+ |1〉2 2〈1|

)
= d̃2. (94)

In this way we have proved that the reduced-density op-
erators d1 and d2 obtained from Eq. (44) are identical
with the corresponding operators obtained from exact
calculations. Thus, we have shown that the proposed
formalism is absolutely correct in two extreme cases of
macroscopic systems and microscopic systems allowing
exact solutions.

The results obtained for the two extreme cases prove
the correctness of the assumptions made but are of lit-
tle interest from the physical point of view, so in the
following we shall deal with a construction of a quan-
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tum statistical operator and reduced-density operator for
nanoscopic systems interacting with macroscopic envi-
ronment. Now we describe two different methods tak-
ing into account the interaction between a nanoscopic
system (or an ultrathin film) and the macroscopic sub-
strate. In the first the problem is tackled in the terms of
the QST, while the second is based on reduced-density
operator (44).

4.3. QST of a nanoscopic system

The starting point of QST is that any macroscopic sys-
tem because of very high mean density of states cannot
be treated as isolated from its environment. The QST as-
sumes that the interaction of a given macroscopic system
with the environment is so weak that it can be described
by vector of state |Ψ(t)〉 depending on time t. As a re-
sult of the environment effect the system is not one of
the eigenstates |E〉 of the Hamiltonian H:

H |E〉 = E |E〉 , (95)
but in a non-stationary state depending on time. Under
such an assumption the expectation value of any observ-
able a is determined by
〈a(t)〉 = 〈Ψ(t)| a |Ψ(t)〉 . (96)

A result of measurement during τ is the quantum state
|Ψ(t)〉 averaged over a particular time interval 〈0, τ〉.
Hence the expectation value reads〈
〈a〉
〉

=
∑
E

∑
E′

CE,E′ 〈E| a |E′〉 , (97)

where

CE,E′ =
1

τ

τ∫
0

dt〈Ψ(t)|E〉〈E′|Ψ(t)〉. (98)

Another assumption is that the disturbances of the
macroscopic system caused by the environment are ab-
solutely random, which leads to cancellation of the non-
diagonal terms in Eq. (97), and

CE,E′ = pEδE,E′ , (99)
where

pE =
1

τ

τ∫
0

dt
∣∣〈E|Ψ(t)〉

∣∣2. (100)

Hence,〈
〈a〉
〉

=
∑
E

pE 〈E| a |E〉 = Tr(aρ), (101)

where ρ is the statistical operator,

ρ =
∑
E

|E〉 pE 〈E| , (102)

and pE is the probability distribution determined as-
suming different statistical hypotheses that are beyond
the quantum theory. Therefore there exist different ap-
proaches to the QST [6, 7]. It is known that a wide class
of physical phenomena in the macroscopic systems being
in the state of thermodynamical equilibrium can be suf-
ficiently well described by the statistical operator [6]:

ρ = exp
(
β(F −H)

)
=
∑
E

|E〉 eβ(F−E) 〈E| , (103)

where

F = − 1

β
lnTr(e−βH), (104)

and β = (kBT )−1.

In order to describe a nanoscopic system in terms of
QST a macroscopic system is divided into a nanoscopic
subsystem j surrounded by the macroscopic part of the
system j

′
. After such a division the Hamiltonian H can

be expressed as
H = Hj +Hj′ +Hjj′ , (105)

where Hj and Hj′ are the Hamiltonians of the systems
j and j

′
, while Hjj′ is the term describing the interac-

tions between these systems. Let aj be an operator cor-
responding to the observable describing the nanoscopic
system j. The expectation value of this observable is
given by〈
〈aj〉
〉
j

= Tr(aj eβ(F−H)) = Trj(ajρj), (106)
where ρj is the reduced statistical operator of the
nanoscopic system j [1, 4]:

ρj = Trj′
(

exp
(
β
(
F −Hj −Hj′ −Hjj′

)))
, (107)

Trj (. . .) and Trj′ (. . .) a partial traces over the states of
the systems j and j

′
, respectively. Expanding Eq. (114)

into a power series used in the thermodynamic perturba-
tion calculus [8], one obtains

ρj = eβ(Fj−Hj)
〈
〈Ujj′〉

〉
j′
, (108)

where〈
〈. . .〉

〉
j′

= Trj′(. . . eβ(Fj′−Hj′ )), (109)

Ujj′ = P exp

(
−

β∫
0

dβ
′
H̃jj′(β

′
)

)
, (110)

H̃jj′ = eβ(Hj+Hj′ )Hjj′ e−β(Hj+Hj′ ), (111)

Fj′ = − 1

β
lnTrj′(e−βHj′ ), (112)

Fj = − 1

β
lnTrj

(
e−βHj

〈
〈Ujj′〉

〉
j′

)
(113)

and P is the operator analogous to the Dyson time-
ordering operator. Equations (106) and (108) permit a
full description of the physical properties of a nanoscopic
system j in the state of the thermodynamic equilibrium
and interacting with its environment.

According to Eqs. (106) and (108) we obtained ex-
pression for expectation value of an arbitrary observable
a of the nanoscopic system j:〈
〈aj〉
〉
j

= Trj
(
aj eβ(Fj−Hj)

〈
〈Ujj′〉

〉
j′

)
. (114)
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4.4. Reduced-density operator for nanoscopic system

In contemporary science and technology we very of-
ten deal with multiparticle systems which cannot be
considered as massive macroscopic systems. For exam-
ple they are ultrathin multilayer systems, mesoscopic or
nanoscopic systems or many of biological systems. They
are most often met e.g. in micro- and nanoelectronic de-
vices. Because of their unique physical characteristics,
they are referred to by the new terms mezophysics and
nanophysics which appeared in literature.

From the point of view of our considerations, the im-
portant feature of these systems is that their interaction
with environment is not a small surface effect, and there-
fore, the terms describing their interaction with environ-
ment cannot be neglected. Let us study a nanoscopic
system j surrounded by a massive macroscopic system j′.
Thus, the system j + j′ is a massive macroscopic system
whose interaction with the remaining part of the universe
can be neglected.

In analogy to the formula for the reduced-density
operator (48) we can write the reduced density operator
for the system j + j′ in the form

dj+j′ = exp(−Lj+j′ − P j+j′Qj+j′ ) (115)

and for the system j′:
dj′ = exp(−Lj′ − P j′Qj′ ). (116)

For the system j, the operator (44) takes the form

dj = exp
(
− Lj − P j(Qj +Q

′

j
)
)
, (117)

where
Q

′

j
= Trj′

(
Q
jj′

TrR′
(
K ⊗

j′′ 6=j,j′
dj′′
)
dj′
)

=

Trj′
(
Q
jj′
Kjj′dj′

)
(118)

and Kjj′ is the reduced-correlation superoperator be-
tween systems j and j′, defined by the following formula
(see Eq. (22)):

dj+j′ := Kjj′dj ⊗ dj′ ≡ (1j+j′ + κjj′ )dj ⊗ dj′ ≡

TrR′ (K ⊗
j′′ 6=j,j′

dj′′ )dj ⊗ dj′ , (119)

so
Kjj′ = TrR′ (K ⊗

j′′ 6=j,j′
dj′′ ).

Now we shall find the explicit although formal equa-
tion for the reduced-correlation operator, κjj′ and then
the reduced-correlation superoperator Kjj′ . Since the
operator (115) is a function of the operator Q

j+j′
, these

operators commute, so
Q
j+j′

dj+j′ = 0, (120)

where Q
j+j′

is the commutator superoperator

Q
j+j′

:=
[
Q
j+j′

,
]
−

(121)

and the brackets [ , ] stand for the commutator. For the
same reasons the following relation holds:

Q
j′
dj′ = 0, (122)

where
Q
j′

:=
[
Q
j′
,
]
−
. (123)

As follows from the formula (15) we have
Q
j+j′

= Q
j

+Q
j′

+Q
jj′
, (124)

where
Q
j

:= [Q
j
, ]−, (125)

Q
jj′

:= [Q
jj′
, ]−. (126)

Putting the expressions (119) and (124) into (102) and
using Eq. (122), we get(

Q
j

+Q
jj′

)
dj ⊗ dj′ +Q

j+j′
κjj′dj ⊗ dj′ = 0. (127)

Introducing the superoperator Q
−1

j+j′
inverse to the su-

peroperator Q
j+j′

, defined as:

Q
−1

j+j′
Q
j+j′

= 1j+j′ (128)
we can write

κjj′ = −Q−1

j+j′

(
Q
j

+Q
jj′

)
(129)

and, as follows from Eq. (119):

Kjj′ = 1j+j′ −Q
−1

j+j′

(
Q
j

+Q
jj′

)
. (130)

The superoperators have their matrix representations [9]
and thus it is possible to define a superoperator inverse
to a given superoperator.

In this way we have obtained an explicit although for-
mal expression for the reduced-correlations superopera-
tor Kjj′ between the systems j and j′ satisfying the con-
dition (23).

Substituting Eq. (118), (130) and (116) into expres-
sion (117) we get
dj = (131)

exp

(
− Lj − P jQj − P jTrj′

(
Q
jj′

exp
(
− Lj′ − P j′Qj′

))
+P jTrj′

(
Q
jj′
Q
−1

j+j′

(
Q
j

+Q
jj′

)
exp

(
− Lj′ − P j′Qj′

)))
.

The formula (131) is the most general form of the equi-
librium reduced-density operator for any system j inter-
acting with its macroscopic environment j′. It is more
general than the formulae used in QST in the theory of
macroscopic systems.

In the particular case when j′ is described by the
reduced-density operator (59), we get

dj = exp

(
− Lj − P jQj + P1jTrj′

(
Hjj′ e

β
j
′ (F

j
′−H

j
′ )
)

+P1jTrj′
(
Hjj′Q

−1

j+j′

(
Q
j

+Q
jj′

)
e
β
j
′ (F

j
′−H

j
′ )
))

. (132)

When the system j contains a sufficiently large number
of particles, we can neglect the reduced-correlation su-
peroperator κjj′ in Eq. (131) and then, instead of (132)
we get
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dj = exp

(
− Lj − P jQj − P1jTrj

(
Hjj′ e

β
j
′ (F

j
′−H

j
′ )
))

.

(133)
Moreover, assuming that the system j can exchange

only energy with the system j′, the reduced-density op-
erator takes the form

dj = exp

(
βj

(
Fj −Hj − Trj′

(
Hjj′ e

β
j
′ (F

j
′−H

j
′ ))

+Trj′
(
Hjj′Q

−1

j+j′
(Q

j
+Q

jj′
)e
β
j
′ (F

j
′−H

j
′ ))))

, (134)

where from the normalization conditions we get

Fj′ = − 1

βj′
lnZj′ , (135)

Fj = − 1

βj
lnZj , (136)

Zj′ = Trj′
(

e
−β

j
′H

j
′
)
, (137)

Zj = Trj
(

exp

(
βj

(
−Hj − Trj′

(
Hjj′ e

β
j
′ (F

j
′−H

j
′ ))

+Trj′
(
Hjj′Q

−1

j+j′
(Q

j
+Q

jj′
)e
β
j
′ (F

j
′−H

j
′ )))))

. (138)

The reduced-density operator (134) for βj′ = βj can be
expressed as

d1 = exp
(
βj
(
Fj −Hj −H

′

j

))
, (139)

where
H

′

j = Trj′
(
Hjj′Kjj′dj′

)
(140)

and
dj′ = exp

(
βj
(
Fj′ −Hjj′

))
. (141)

From expression (119) we get
dj+j′ = K12dj ⊗ dj′ ∼= Kjj′dj′ ⊗ doj , (142)

K12 = dj+j′(d
o
j)
−1, (143)

where
doj = exp

(
βj
(
Fj −Hj

))
(144)

and(
doj
)−1

= exp
(
− βj

(
Fj −Hj

))
(145)

is operator inverse to the operator doj .
Substituting Eqs. (143) and (145) to (140) and after

calculations we arrive at

H
′

j =
〈Hjj′Vjj′〉j′
〈Vjj′〉oj+j′

, (146)

where
〈. . .〉j′ = Trj′(. . . dj′), (147)

〈. . .〉oj+j′ = Trj+j′(. . . doj+j′), (148)

doj+j′ = exp
(
βj
(
F oj+j′ −Ho

j+j′
))
, (149)

Ho
j+j′ = Hj +Hj′ , (150)

Vjj′ = 1−
βj∫

0

dβ
′
Vjj′H̃jj′ , (151)

H̃jj′ = exp
(
− β

′
Ho
j+j′

)
Hjj′ exp

(
β

′
Ho
j+j′

)
. (152)

Using Eq. (151) we can approximate operator Vjj′ by
the method of iteration with the first approximation ex-
pressed as

Vjj′ = 1−
βj∫

0

dβ
′
H̃jj′ . (153)

Expanding Vjj′ into a power series analogously used in
the thermodynamical perturbation calculus [8], one ob-
tains

Vjj′ = P exp

(
−

βj∫
0

dβ
′
H̃jj′

)
, (154)

where P is the operator analogous to the Dyson time-
ordering operator.

According to Eqs. (18), (108), (139) and (146) we ob-
tained two different expressions for expectation value of
an arbitrary observable aj of the nanoscopic system j:

〈aj〉 = Trj
(
aj exp

(
βj
(
Fj −Hj(βj)

)))
(155)

and (114), where

Hj(βj) = Hj +
〈Hjj′Vjj′〉j′
〈Vjj′〉oj+j′

. (156)

Equation (155) is easier in specific applications than
(114) because it takes into account the interactions with
environment through an easy replacement of the Hamil-
tonian Hj of a nanoscopic system j by the effective
Hamiltonian Hj(βj) : Hj → Hj(βj).

5. Conclusions

Equation (47) is the most general form of the funda-
mental equation of the thermodynamics of equilibrium
states. When we neglect the terms describing the interac-
tion of a given system with its environment this equation
takes the form of the fundamental equation of the QST.
As we have shown, Eq. (47) applied to a model exactly
solvable microscopic system also leads to exact results.

This equation has been derived on the basis of the
quantum theory variational principle and not the QST, so
without statistical hypotheses. Therefore, the approach
leading to Eq. (47) could be called quantum thermody-
namics (QT) to distinguish it from the QST.

The QT is conceptually simpler and more general than
the QST. It is not only suitable for description of macro-
scopic systems (like QST) but it can be also applied to
describe nanoscpic, mezoscopic systems, and ultrathin
films. Moreover, in the QT it can be proved that the
dependence of the equilibrium reduced-density operators
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(or statistical operators) on non-additive operators com-
muting with the Hamiltonian can be disregarded, which
is assumed in the quantum statistical mechanics.

We have shown that fundamentals of the quantum
thermodynamics do not have to be formulated in anal-
ogy to the classical statistical thermodynamics, because
we do not have to supplement the quantum theory with
the statistical methods as the probabilistic concepts are
inherent in the quantum theory. The quantum theory
is holistic theory, which reflects the fact that, accord-
ing to the fundamental postulate to the quantum cos-
mology, the universe has a vector of state, common to
all its macroscopic many particle subsystems, and vec-
tors of state of its particular subsystems cannot be spec-
ified. In the classical description we can simultaneously
have full information about the state of a whole system
and its particular components. The holistic properties of
the quantum theory allow a comprehensive description
of many particle systems in the formalism of reduced-
density operators.

The only postulate used in the quantum thermody-
namics that goes beyond the frames of quantum cosmol-
ogy is the assumption that the universe can be divided
into parts whose state practically does not change in time
— the postulate of equilibrium. This postulate has the
character of an assumption specifying the states of the
universe subsystems and is in agreement with the facts
observed in reality. As it follows from our experience,
most often many-particle systems being in the environ-
ment undergoing slow time changes, reach the equilib-
rium state sooner or later. After they have reached this
state we can divide the universe into at least two parts
k = 2 being in the equilibrium state: a given many-
particle subsystem and the remaining part of the uni-
verse. The postulate claiming the possibility of the divi-
sion of the universe into k ≥ 2 parts being in the state
of equilibrium does not limit the general character of the
principles of the quantum thermodynamics, which sim-
ply is the quantum theory of many-particle systems in
the equilibrium states. Thus the problem of falsification
of the quantum thermodynamics is therefore at the same
level of generalisation as that of falsification of the quan-
tum cosmology.

The reduced-density operator (133) takes into account
the interaction with environment only in the mean field
type approximation and that is why it is much easier in
applications than the reduced statistical operator (131)
describing this interaction in a complete form. The sim-
plified form of the reduced-density operator (133) has
been successfully used for description of the influence
of substrate on the properties of the magnetic ultrathin
films [10] and spin nanoscopic systems [11, 12]. The au-
thors of these works have proved that in many cases the
interaction with substrate significantly affects the physi-
cal properties of such systems.

Therefore, in future, such systems should be described
using the non-simplified form of the reduced-density op-
erator (131). This operator may also be useful in descrip-
tion of certain devices appearing in quickly developing
quantum engineering and quantum technology, molecular
electronics, and biological systems studied in molecular
biophysics.
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