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Entropy Associated with Local Stabilization of the Pulse Area
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This paper provides an entropy analysis to resonant and short pulses propagation in four-level atomic medium.
As an example, we take D1 transition in rubidium 87Rb atoms including hyperfine structure. We show how to
construct the time dependent Bloch-metric for each optical transition in the Liouville space. Furthermore, we
attempt to relate local stabilization of the pulse area to the distribution of the space-entropy.
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1. Introduction

Propagation of ultra-short light pulses in two-level
atomic media is often investigated via the McCall and
Hahn area theorem [1, 2] and self-induced transparency
(SIT) [3, 4]. Alternatively, Lamb [5] showed that the
equations of SIT can be considered within the standard
equations of the inverse scattering transform (IST), the
Zakharov–Shabat (ZS) eigenvalue problem [6]. The tran-
sient process of self-induced transparency soliton forma-
tion has been recently addressed [7]. In an attenuating
media, the area theorem predicts the transparency for
pulses with initial area of 2π. Using the Bäcklud transfor-
mations (BT) one can relate solution of the sine-Gordon
(SG) equation to another. In addition, the breakup of
pulses having initial area of multiple 2π into separate 2π
pulses has been demonstrated [8, 5, 9]. The evidence of
such breaking is studied through numerical integration
of the coupled Maxwell–Bloch equations (MBE) [10, 11].
It has been shown that an oscillating tail will arise after
the occurrence of breaking. This oscillating tail is often
referred to as pulse radiation or ringing [12]. Recently,
the propagation in atomic vapor has been reviewed [13].
It is worthwhile to state that the pulse breakup does not
hold in general for propagation in multi-level atomic me-
dia [14]. Matusovsky et al. [15] attributed the absence
and lack of sensitivity of the pulse break to the multi-
plicity of the levels and the unequal dipole moments of
the allowed-dipole transition.

This paper presents an alternative view to the theoreti-
cal description of pulse propagation in atomic vapors. We
are looking for entropy as an identifier for local stabiliza-
tion of the pulse area, rather than its energy. The entropy
has been recently addressed as a metric generator of dis-
sipation in classical dissipative systems [16]. The relation
between thermodynamic entropy and Shannon’s measure
of information are investigated in [17], where it has been
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pointed out that entropy is defined on any probability
distribution. Garbaczewski discussed entropy methods
in connection with closed quantum systems [18]. In our
paper, we are mainly concerned with space-entropy asso-
ciated with the local stabilization of short pulses propa-
gation.

Our treatment for the time evolution of the dressed
atom is based upon the density matrix approach. We
are working with the density matrix in the flatten form
as eα, where α numerates the maximum accessible bases
from 1 to 28 [19]. Such general formalism will enable us
to reveal enhancements of all accessible multipoles of the
density matrix.

It seems to us that it is difficult to define the pulse area
for resonant interaction of strong ultra-short light pulses
in four-level atom scheme, due to the finite duration of
the pulses. Therefore, we are interested in short pulse
propagation. Furthermore, we are motivated by the work
on long pulse self-induced transparency [20]. Finally, we
assume that the hyperfine structure is resolved and the
multi-photon resonance approximation is satisfied, as the
frequencies are tuned to their respective dipole allowed
transitions. The initial phases of the fields are considered
to be zero.

The paper is organized as follows. Section 2 intro-
duces the relevant density matrix equations. The basic
description of the Bloch-metric and the space-entropy are
formulated, explained, and applied in Sect. 3. Sections 4
to 6 refer to results, discussions and conclusions.

2. The theoretical description

We analyze the coherent excitation of the D1 line i.e.
5 2S1/2-5 2P1/2 in 87Rb atom where the hyperfine struc-
ture is taken into account as depicted in Fig. 1. The
spontaneous decay rate of the excited P1/2 state is given
as γ = 5.746 MHz. The fields with the Rabi frequencies
Ωp1 and Ωp2 couple the upper hyperfine levels |3, F3 = 1〉
and |4, F4 = 2〉 with the lower hyperfine level |1, F1 = 1〉,
respectively. In addition, the fields with the Rabi fre-
quencies Ωc1 and Ωc2 couple the upper hyperfine levels
|3, F3 = 1〉 and |4, F4 = 2〉 with the lower hyperfine level
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|2, F2 = 2〉, respectively. The upper hyperfine splitting
is ∆ω4,3 = 816.656 MHz while the lower hyperfine split-
ting takes the value ∆ω2,1 = 6.834 GHz [21]. These two
frequency differences are assumed to be compensated by
the two-photon resonance conditions as

∆ω4,3 = ωp2 − ωp1 , ∆ω2,1 = ωp1 − ωc1 . (1)

Fig. 1. The four-level scheme in a double V or Λ con-
figuration. The pulses Ωp1 and Ωp2 drive the transitions
|3, F3 = 1〉 ↔ |1, F1 = 1〉 and |4, F4 = 2〉 ↔ |1, F1 = 1〉,
respectively. The pulses Ωc1 and Ωc2 couple the tran-
sitions |3, F3 = 1〉 ↔ |2, F2 = 2〉 and |4, F4 = 2〉 ↔
|2, F2 = 2〉, respectively. The upper and lower hyperfine
splitting are denoted by ∆ω4,3 and ∆ω2,1, respectively.

Our scheme presented in Fig. 1 shows a double elec-
tromagnetically induced transparency scheme. Wind-
holz and his coworkers have investigated both theoret-
ically and experimentally the coherent population trap-
ping (CPT) [22–24].

In the present analysis for the double Λ configuration,
we shall assume zero value for the initial phases of the
fields, in order to obtain a definition for real valued pulse
area. Furthermore, we assume that the fields are linearly
polarized and co-propagating where the sharp line limit
(SLL) is to be considered. The spontaneous decay rates
γu,l with u = {3, 4} and l = {2, 1} are related to γ by
branching ratio. The state of the atom is described by
Liouville–von Neumann equations for the density matrix
of the dressed atom
− i∂tρ = (Ĥ + iΦ̂)ρ, ~ = 1, (2)

where Ĥ and Φ̂ stand for the system Hamiltonian and the
relaxation super-operators [25]. The relaxation super-
operator contains both the radiation and collisional con-
tributions [25]. For D1 transition and linearly polar-
ized fields, the density matrix is composed of 28 com-
ponents [19]. These components are: four populations of
the hyperfine levels, eight complex coherences, the align-

ment components, upper- and lower-Raman coherences,
components for the correlations between upper and lower
hf-levels which are of third rank, and hexadecapole mo-
ment components. The number of equations is reduced
to 19 for the case depicted in Fig. 1, as the on resonant
condition is assumed. It is convenient to describe the
density matrix components in the form ρ

(k)
i,j , where k ex-

presses the rank of the density matrix component and
i as well as j numerate the hyperfine levels as shown in
Fig. 1. However, we shall use the corresponding flattened
form as ρα, where α takes the values 1, 2, 3, ...28.

The correspondence between these two descriptions
can be found with the aid of the collisional terms as
listed in Appendix. In particular, we mention the pop-
ulation of the hyperfine levels which are proportional
to the zero rank components: ρ1 ↔ ρ

(0)
1,1, ρ2 ↔ ρ

(0)
2,2,

ρ3 ↔ ρ
(0)
3,3, and ρ4 ↔ ρ

(0)
4,4. The populations of the hf

levels are denoted by
n1 =

√
3ρ1, n2 =

√
5ρ2, n3 =

√
3ρ3, n4 =

√
5ρ4. (3)

The optical coherences for Ωp1 and Ωp2 transitions are de-
noted by ρ5 ↔ ρ

(1)
1,3 and ρ7 ↔ ρ

(1)
1,4, respectively, while the

optical coherences corresponding to Ωc1 and Ωc2 tran-
sitions are denoted by ρ9 ↔ ρ

(1)
2,3 and ρ11 ↔ ρ

(1)
2,4, re-

spectively. In addition, we have the second rank com-
ponents such as: ρ17 ↔ ρ

(2)
1,2, ρ19 ↔ ρ

(2)
3,4, ρ13 ↔ ρ

(2)
1,1,

ρ14 ↔ ρ
(2)
2,2, ρ15 ↔ ρ

(2)
3,3, and ρ16 ↔ ρ

(2)
4,4. The third rank

components are described by ρ21 ↔ ρ
(3)
2,4, ρ23 ↔ ρ

(3)
2,3, and

ρ25 ↔ ρ
(3)
1,4. Finally, we have the components with rank

four as ρ27 ↔ ρ
(4)
2,2 and ρ28 ↔ ρ

(4)
4,4.

The density matrix equations are coupled to the
reduced-Maxwell field equations in the rotating wave ap-
proximation. We shall follow our procedure with using
relative units [19]. In order to write the reduced-Maxwell
field equations in a frame moving with the pulse, we in-
troduce the variables for space η = z + ct and the re-
tarded time t′ = (t− z/c). So, we have ∂η = ∂z + 1/c ∂t,
and c is the light speed here. Let us introduce the di-
mensionless variables for space and time as ζ = α′η and
τ = γt′, where α′ denotes the absorption coefficient of
one of the pulses at z = 0. The differences in absorp-
tion coefficients for the four transitions are ignored. The
time duration of the pulse is described by Tp and its di-
mensionless form as T = γTp. Finally, the atom-field
coupling is denoted by v = drE

2
√
3
, where dr is the reduced

dipole moment and E is the electric field envelope. We
have used ~ = 1. The atom-field coupling is denoted by
vβ and β = {p1, p2, c1, c2}. The Rabi frequency associ-
ated with the four transitions are given by Ωβ = κvβ ,
where κ is the proportional constant, which is to be de-
termined later. The dimensionless atom-field coupling is
denoted by vβ = vβ/γ.

The reduced-Maxwell field equations in a frame
moving with the pulse can be written as

∂ζvp1(ζ, τ) = −ρ5(ζ, τ), (4)
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∂ζvp2(ζ, τ) = ρ7(ζ, τ), (5)

∂ζvc1(ζ, τ) = −ρ9(ζ, τ), (6)

∂ζvc2(ζ, τ) = ρ11(ζ, τ). (7)
At the entrance boundary z = 0 we assume that the
temporal pulse profile takes the form of t2-Gaussian
shape as

v(t) =
64
√

2π

27
v0(t/Tp)

2e−8/9π(t/Tp)
2

. (8)

The pulse is characterized by its mean amplitude v0 and
mean duration Tp as

v0 =

∫ ∞
0

v2(t)dt/

∫ ∞
0

v(t)dt (9)

and

Tp = (

∫ ∞
0

v(t)dt)2/

∫ ∞
0

v2(t)dt. (10)

The pulse area is defined as the integral of the field
envelope over time:

θ(z) = κ

∫ ∞
0

v(t)dt. (11)

We may anticipate our results and take κ as
κ =
√

8 (12)

In our analysis we have restricted ourselves to rapidly
increasing pulse at its front, and a decaying Gaussian
shape for its tail.

3. Rate of change of metric tensor
and Bloch-metric

In this section we will give a brief account of entropy
that is seemed to be useful in the analysis of resonant
pulses propagation. Furthermore, it gives a signature for
local stabilization of pulses as well as its breaking. We
attempt to describe these effects in terms of the Shan-
non entropy and analogously to the Rènyi entropy. En-
tropy has been used for detecting dynamical changes in
time series for complex systems [26]. Vardi and Shapiro
showed entropy exchange between matter and radiation
using time dependence of the linear Rènyi entropy [27].
The rate of entropy production due to absorption and
emission of photons has been discussed in [28]. The
entropy production associated with quantum jumps has
been studied in [29].

The Bloch space structure with eight-dimensional
Bloch sphere for three-level systems has been introduced
using SU(3) basis [30]. The Bloch sphere is shown to be
divided into two sectors. The geometry of the generalized
Bloch sphere for qutrit has been reported in [31]. For the
present analysis we have four-level atom structure.

The Bloch vector Trρ2 is to be found subject to Trρ = 1
constraint on the density matrix components. The ge-
ometry of the Bloch sphere is complicated, since it is
composed of 28 components, in general. In the present

analysis we will decompose the Bloch geometry into four
two-level atoms. Each one of them corresponds to the rel-
evant optical transition with restricted components such
as the population inversion among the hf-levels and the
optical coherences. Then, the goal is to find the Liovil-
lian which generate the space of the associated optical
transition. Furthermore, the Bloch vector B2(t) is ob-
tained in an algebraic technique through the subspace
components generated by the Liouvillian. We simply
avoid Trρ = 1 for each subspace by establishing the es-
cort probability [32, 33] density as

p(t) =
B2(t)∑t
t′ B

2(t′)
. (13)

The procedure is outlined in the following section. It
is to be emphasized that our definition is different from
that used by Bercher [33], where B(t) is not the original
distribution with the condition

∑
tB(t) = 1.

3.1. Construction of space-entropy
for each optical transition

Let us consider the first subsystem characterized by
the Liouvillian L1 as

L1 =


0 γ

6 − vp1√
3
−vp1√

3

0 −γ vp1√
3

vp1√
3

vp1√
3
−vp1√

3
−Γ 0

vp1√
3
−vp1√

3
0 −Γ

 (14)

connecting the ground hyperfine state |1〉 = |F1 = 1〉
with the upper hf state |3〉 = |F3 = 1〉. The Liouvillian
is composed from the coupling field vp1 as the first
generator of L1 subspace, and the relaxation Φ1 oper-
ator as the second generator of L1 subspace. One of
these generators is sufficient to generate the bases. The
relaxation Φ1 super-operator can be written as

Φ1 =


0 γ

6 0 0

0 −γ 0 0

0 0 −Γ 0

0 0 0 −Γ

 . (15)

The space for the first subsystem is spanned by four
density matrix components with a tensor

ρp1 = {ρ1, ρ3, ρ5, ρ6} , (16)
and time evolution

∂tρp1 = L1ρp1 . (17)

The metric tensor of this subspace is given as
ρ2p1 = ρTp1 .ρp1 = ρ21 + ρ23 + ρ25 + ρ26. (18)

The rate of change of the metric tensor for L1 subspace
is given by

1

2

∂

∂t
Trρ2p1 = Tr

{
ρTp1 . (Φ1ρp1)

}
=

−γρ23 +
1

6
γρ1ρ3 − Γ

(
ρ25 + ρ26

)
=

γρ3

(ρ1
6
− ρ3

)
− Γ

(
ρ25 + ρ26

)
. (19)
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From Eq. (19), the weighted population inver-
sion within the first subsystem may be written as
w =

(
ρ1
6 − ρ3

)
. This is not true, since the terms

∂tw
2 and ∂t

(
ρ25 + ρ26

)
are not compensated to produce

traceless time variation of the Bloch vector over the
field. We mean by weighted population inversion that
one which is explicitly dependent on the branching ratio
of the excited hf levels. Let us construct the weighted
population inversion and the Bloch squared length for
the Bloch vector of the first subsystem as

W1 = (ρ3 − ρ1) , B2
1 =

1

2
(ρ3 − ρ1) 2 +

(
ρ25 + ρ26

)
. (20)

The squared length of the Bloch vector is composed
from the population inversion and coherence terms

1

2
∂tB

2
1 =

7

12
γρ3 (ρ1 − ρ3)− Γ

(
ρ25 + ρ26

)
(21)

We shall denote the constructed squared length of the
Bloch vector as the Bloch-metric. So, rate of change
of the Bloch-metric is traceless over the field vp1 which
imposes the correctness of our choice for the population
inversion. This choice is identical with the instantaneous
population inversion between the first and third hf level.
Since, these states have the same statistical weight.

The states |1〉 = |F1 = 1〉 and |4〉 = |F4 = 2〉 form
the optical transition for the second subsystem with
coupling field vp2 . The hf states |1〉 and |4〉 have
different statistical weights. For the second subsystem
the Liouvillian is written as

L2 =



0 1
2

√
5
3γ

√
5
3vp2

√
5
3vp2

0 −γ −vp2 −vp2
−
√

5
3vp2 vp2 −Γ 0

−
√

5
3vp2 vp2 0 −Γ
,


(22)

where the density matrix
ρp2 = (ρ1, ρ4, ρ7, ρ8) (23)

spans the second subspace from the total Liouville space
with time evolution

∂tρp2 = L2ρp2 . (24)

Let us assume that the Bloch-metric for the second
subsystem can be factorized as

B2
2 =

1

2
a (cρ4 − ρ1) 2 + ρ27 + ρ28, (25)

where a and c are constants, yet to be determined.
The constants a and c which insure the traceless of the
dependence in B2

2 on vp2 are: a = 5/4 and c = 3/5.
Therefore

W2 =

√
3

5
ρ4 − ρ1, B2

2 =
5W 2

2

8
+ ρ27 + ρ28. (26)

The first two subsystems form the vp branch connect-
ing the first ground hf level to the excited and upper
hyperfine levels. The other vc branch is connecting

the second and ground hf level with the excited and
upper hf levels. The third subsystem optical transition
is the transition |2〉 = |F2 = 2〉 with the upper hf state
|3〉 = |F3 = 1〉 while the driving field is vc1 . Let ρc1
with the components ρc1 = (ρ2, ρ3, ρ9, ρ10) represent the
generators for the third vc1 subspace with

L3 =



0 1
2

√
5
3γ −vc1 −vc1

0 −γ
√

5
3vc1

√
5
3vc1

vc1 −
√

5
3vc1 −Γ 0

vc1 −
√

5
3vc1 0 −Γ

.


(27)

With the same procedure outlined previously for the
case of different statistical weight for levels, we can write
for the population inversion and the squared length for
the Bloch vector as

W3 =

(√
5

3
ρ3 − ρ2

)
,

B2
3 =

3

8

(√
5

3
ρ3 − ρ2

)
2 + ρ29 + ρ210. (28)

Let ρc2 with the components ρc2 = (ρ2, ρ4, ρ11, ρ12)
represent the generators for the fourth vc2 subspace with

L4 =


0 γ

2 vc2 vc2
0 −γ −vc2 −vc2
−vc2 0 −Γ 0

−vc2 0 0 −Γ
.

 (29)

and the population inversion as well as the squared
length of the Bloch vector can be written as

W4 = (ρ4 − ρ2) , B2
4 =

1

2
(ρ4 − ρ2) 2 + ρ211 + ρ212 (30)

Finally, let us construct the probability density func-
tions with respect to time and at fixed space point z as

pα(z, t) =
B2
α(z, t)∑t′=tf

t′=t0
B2
α(z, t′)

, (31)

where α takes the values 1 up to 4, representing the first,
second, third, and fourth subsystems, respectively. The
initial and finial times are denoted by t0 and tf , respec-
tively. We termed

Sα(z) = −
t=tf∑
t=t0

pα(z, t) log2(pα(z, t)) (32)

as the space-entropy which represents the Shannon en-
tropy associated with the normalized Bloch squared
length probability density function. The Bloch entropy
is considered as a generator for population inversion and
dissipation out of the atomic system under consideration.
The quantum interference between these two terms leads
to area construction (build-up of area) or destruction.
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4. Results

This section provides an entropy analysis for short
pulses propagation in a four-level atomic medium. The
optical pulse is resonant to one of the four atomic tran-
sitions as indicated in Fig. 1. The propagation dynamics
is given by the numerical solution of the coupled density
matrix components, listed in Appendix, and the reduced
Maxwell field equations: Eq. (4) to Eq. (7). The con-
figuration in Fig. 1 is discussed in terms of double V
subsystems. The first V1 subsystem connects excited hf
states |3〉 and |4〉 to the first ground hf state |1〉, while
the second V2 subsystem connects excited hf states |3〉
and |4〉 to the second ground hf state |2〉.

4.1. Space-entropy resonance lines for V1 subsystem

4.1.1. Propagation dynamics for space-entropy S2(ζ) as-
sociated with the field Ωp2(τ) and the optical transition
|1〉 ↔ |4〉

Space-entropy (Eq. (32)) is illustrated in Fig. 2 for Ωp2
transition and for different initial pulse area θ0 = θ(ζ =
0) as θ0 = {3, 9, 2, 8} in π units. We have restricted our
discussions to the case when the four pulses have the
same initial area θ0. We take the notations

θvp1
(ζ) =

∫ τmax

0

√
8vp1(ζ, τ)dτ ,

θvp2
(ζ) =

∫ τmax

0

√
8vp2(ζ, τ)dτ ,

θvc1
(ζ) =

∫ τmax

0

√
8vc1(ζ, τ)dτ ,

θvc2
(ζ) =

∫ τmax

0

√
8vc2(ζ, τ)dτ , (33)

and τmax = 10, which is the maximum time for the time
variable. In Fig. 2 the space-entropy S2(ζ) resonance
lines are exposed, where the horizontal base line is the
maximum entropy. The maximum entropy is indepen-
dent of the initial pulse area θ0 for big distances.
4.1.2. Propagation dynamics for the area θ2(ζ) associated
with the field Ωp2(τ) and the optical transition |1〉 ↔ |4〉

The space dependence of pulse area θ2(ζ) is depicted
in Fig. 3, where the local stabilization of 2mπ pulses is
shown. The number m is an integer number and m ≥ 2.
We mean by local stabilization of area that the area is
merely constant over some prolonged distance. The value
2mπ is also the critical value for pulses breakdown to a
value 2(m−1)π. By inspection of Fig. 4, we conclude that
the drops of space-entropy are due to area-transitions by
a 2π value. S2(ζ) shows these transitions at 2mπ val-
ues. These transitions are accomplished by area nutation
nearby the critical 2mπ values showing direction towards
the nearest local stabilization.

The space-width in the local stabilization for the area
corresponds to maximum space-entropy in S2(ζ). In ad-
dition, all transitions are bounded from above by the
maximum-entropy. Figure 4 shows that the local stabi-
lization width in space for the area can be estimated from

Fig. 2. Space-entropy resonance lines for Ωp2 transi-
tion.

Fig. 3. Local stabilization of 2mπ pulses associated
with Ωp2 second transition. The number m is an in-
teger such that m ≥ 2. The dependence of stabilization
on the initial area are shown from above to below as
θ0 = 9, 7, 5, and 2 in π units.

the width in space for maximum-entropy. The stabiliza-
tion width means the distance over which the area of the
pulses in space θ(ζ) becomes nearly constant. Figure 3
shows that the space width for the propagated 2π pulse
has the largest stabilization-width in space.

It is amazing to note that the structure in Fig. 3 show-
ing the area transitions from 2mπ to 2(m − 1)π occur
not only regularly, but also at nearly the same position
in space for different initial area. This indicates that the
area parameter for the second transition could be used to
predict the space dependence of the information in the
experimental work. The slight nutation in area presented
in Fig. 3 is transferred into variations toward the direc-
tion of increasing entropy to reach maximum-entropy and
to obtain next nearby stabilization (Fig. 3).
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Fig. 4. Space-entropy transitions and pulse area for
the second transition in the course of propagation. The
initial area is taken as θ0 = 8 in π units. The solid
line represents θ0− θ2(ζ) and the dotted line represents
S2(ζ).

These fluctuations in space-entropy around the crit-
ical values, and the area nutation make the area not
a good dynamical variable for space-entropy consider-
ations. Therefore, one cannot explicitly express S2 =
S2(θ2). Since, near critical values the space-entropy is no
longer single valued function. This behavior is depicted
in Fig. 5. Discussions concerning single and multival-
ued transformations have been pointed out by Robin-
son [34, 35].

Fig. 5. Space-entropy transitions against pulse area for
the first and second transition. The initial area is taken
as θ0 = 8 in π units.

4.1.3. Propagation dynamics for space-entropy S1(ζ)
associated with the field Ωp1(τ) and the optical transition
|1〉 ↔ |3〉

The θ1(ζ) behavior looks like the weak field limit of the
two-level atom. This is in the sense that the area more or

less attenuates in the course of propagation. It is evident
from Fig. 5 that S1(ζ) does not show sharp transitions
about the values 2mπ where m is an integer. Some of
these transitions are near π and 3π for relatively weak
and moderate areas. For strong areas, S1(θ1) shows a
smooth function of area with one minimum. These odd-π
transitions are smeared out in the space behavior of θ1(ζ).
The area θ1(ζ) is a continuous decaying function in space
without dips that is showing transition to lower area val-
ues. While space-entropy identifies these smeared-out
resonances as these transitions are not stable.

4.2. Space-entropy resonance lines for V2 subsystem

In this section we shall be concerned with the propa-
gation dynamics and space entropy consideration for the
second V2 subsystem. This V2 subsystem is connected
to the first V1 subsystem through the excited states |3〉
and |4〉. Furthermore, both of them share the common
upper-Raman coherence. Additionally, the second sub-
system has its own third rank components connecting the
excited states |3〉 and |4〉 to second ground hf state |2〉.
Figure 6 presents the space-entropy S3(ζ) and S4(ζ) for
the third and fourth transitions, respectively, where the
initial area is taken as θ0 = 8.

The third transition connecting the hf states |2〉 and
|3〉 join states with different statistical weights. We have
deduced its squared length for the Bloch vector as B2

3

in Eq. (28). The fourth transition connects states |4〉
and |2〉 and these states have the same statistical weight.
For the fourth transition the squared length for its Bloch
vector was given as B2

4 in Eq. (30). To our understand-
ing, concerning propagation dynamics for connected lev-
els with the same statistical weight, we may expect that
the fourth transition is less stabilized than the third tran-
sition. This feature is revealed by inspection of the be-
havior of S3(ζ) and S4(ζ) in Fig. 6. The space-entropy
reduction in the fourth transition is exposed. The dis-
tinct critical area as 2mπ are no longer valid for space-
transitions in Fig. 6. The space-transitions appear with
fractional values in area. The behavior of θ3(z) shows
that the field Ωc1 is amplified in the course of propaga-
tion, while Ωc2 is attenuated and its area becomes nega-
tive for big distance.

4.3. Space-entropy associated
with negative area propagation

In this section we pay attention to propagation with
negative area. As example, let θ0 = 4 in units of π. Fig-
ure 7 shows the envelope functions of vc1(τ) and vc2(τ)
at z ≈ 6000. These shape functions for the second V2
subsystem. The fields on the V1 subsystem are relatively
small. Thus, the propagation dynamics collapses to prop-
agation into V2 subsystem with upper-Raman coherence.
It is worth mentioning that negative area does not con-
clusively mean negative field envelope. But some nega-
tive area propagation is produced by a long tail contribu-
tion with negative area which dominates over the front
of the pulse.
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Fig. 6. Space-entropy of S3(ζ) and S4(ζ) for the third
and fourth transitions, respectively.

Fig. 7. Time dependence of envelope functions and the
area θ3 as well as θ4 for the third and fourth transi-
tions, respectively. The area represented in π units.
The envelope functions fc1 = vc1(t)/max(vc1(t)) and
fc2 = vc2(t)/max(vc2(t)) show the relative temporal be-
havior of the pulses: vc1(t) and vc2(t). They are guide-
line eye to show the front and tail of the pulse. z ≈ 6000
and θ0 = 4 in π units..

The stabilized area is composed of three soliton-like
envelope shapes with kink and anti-kink, which produce
zero area as in Fig. 7. The third soliton-like shape is
a generated tail with mainly negative envelope and area.
Figure 6 presents the space-entropy for the second V sub-
systems with space-entropy components {S3(ζ), S4(ζ)}.
The space entropy S4 has the largest dip or equivalently
∆S4 is maximum, characterizing a propagation with neg-
ative area.

Figure 8 shows the space-entropy S3 as well as the
area θ3(ζ) in the course of propagation. In the period

when the area approaching the zero value from left and
from right, the space-entropy approaches the minimum
entropy. Finally, the area stabilizes at the negative level
of ≈ 2π.

Fig. 8. Space-entropy for S3(ζ) (dashed line) as well as
the area θ3(ζ) (solid line) in the course of propagation..

5. Discussions

Our treatment for the propagation dynamics of short
pulses in multilevel atomic media is connected to the en-
tropy concept. This approach is suitable for the area local
stabilization irrespective of energy stabilization. In the
present study, the local energy fails to justify the local
stabilization in the pulses area. The simple case where
the energy stabilization leads to area stabilization and
soliton propagation is no longer adequate in our present
study. Strictly speaking the condition on energy stabi-
lization in terms of area does not exist. The multiple
light storage effects are significant in our present study.
The multiple light storage effects manifest itself in area
production and destruction in the course of propagation.
In the present study, the area of the waveform is a result
of interference between kinks and anti-kinks waveforms.
Therefore the simple mapping of coherence in terms of
area does not exist. We have appealed to the entropy
concept through we have termed as the space-entropy
in order to find something else other than energy which
justifies and identifies the local stabilization.

In fact, if we pay attention to entropy or not, the basic
constraints on the solution of the Maxwell–Bloch equa-
tions (MBE’s) are not avoidable. These constraints are
on Trρ and Trρ2. The Bloch entropy introduced is some
function on Trρ2 in general. In any case without the
condition on 1

2∂tTrρ
2 one cannot find analytical solution

to the reduced Maxwell–Bloch equations (RMBE’s) for a
simple two level atom case and ignoring the atomic relax-
ation. Therefore, the treatment of entropy in our paper
is natural.
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6. Conclusions

In this study, we have restricted ourselves to the case
where the pulses have the same initial area and time du-
ration. The pulses have initially the same shape as t2-
Gaussian. We have facilitated a dynamical entropy ap-
proach to describe the space-entropy. It is generated by
the irreducible tensorial components of the statistical op-
erator for D1 transition in 87Rb. The statistical weight
for the locally stabilized area is found to be κ =

√
8,

which is independent of the transition.
In this study, we have shown the dependence of area

and space-entropy upon the initial the area θ0 of the
propagating pulses. It is assumed that the initial area
takes the values θ0 = 2mπ where m is an integer.

1. We have reported propagation in one channel
among the four two-level atomic channels, which
is shown to be in a good resemblance to the area
theorem.

2. The local stabilization of 2mπ pulses propagation
where m is an integer are exclusively relevant to
the hyperfine transition |1, F1 = 1〉 ↔ |4, F4 = 2〉.

3. The area distribution in space for the transition
|1, F1 = 1〉 ↔ |4, F4 = 2〉 characterizes distribution
which maximizes the space-entropy with downward
peaks corresponding to transition from 2mπ into
2(m− 1)π in area.

4. Space-entropy S1(ζ) identifies smeared-out reso-
nances where these transitions are not clearly iden-
tified in the behavior of the area θ1(ζ) for the first
optical transition.

5. The area distributions with negative values are dis-
tributions which minimize the space-Bloch entropy.

6. The negative area for field envelope consists of three
time sections. The first and second time sections
comprise from positive kink and negative anti-kink.
The kink and anti-kink are soliton-like waveforms
with zero total area. The third section is a gener-
ated tail with mainly negative field envelope.

7. The area in V2 subsystem with its components
θ3 and θ4 for moderate distances show positive
and negative peaks, respectively. This reflects the
change of sign for the coherence in the Maxwell field
equations.

The present paper is devoted to local stabilization of
the pulse area and its relation to spatiotemporal Bloch-
metric distributions. The space-entropy reveals propa-
gation with local stabilization in the pulse area associ-
ated with maximum or minimum entropy distributions
in space.

Appendix A:
The time evolution of the density matrix equations

∂tρ1(t) = −γ(coll.)
1,1 ρ1(t) +

√
3

5
γ

(coll.)
1,1 ρ2(t) +

γ

6
ρ3(t) +

1

2

√
5

3
γρ4(t)− 2

v1(t)√
3
ρ5(t) + 2

√
5

3
v2(t)ρ7(t), (A.1)

∂tρ2(t) =

√
3

5
γ

(coll.)
1,1 ρ1(t)− 3

5
γ

(coll.)
1,1 ρ2(t) +

1

2

√
5

3
γρ3(t) +

γρ4
2
− 2vc1(t)ρ9(t) + 2vc2(t)ρ11(t), (A.2)

∂tρ3(t) =
(
−γ(coll.)

4,4 − γ
)
ρ3(t) +

√
3

5
γ

(coll.)
4,4 ρ4(t) +

2vp1(t)√
3

ρ5(t) + 2

√
5

3
vc1(t)ρ9(t), (A.3)

√
3ρ1(t) +

√
5ρ2(t) +

√
3ρ3(t) +

√
5ρ4(t) = 1, (A.4)

∂tρ5(t) =
1√
3
vp1(t)ρ1(t)− 1√

3
vp1(t)ρ3(t) +

(
−γ(1)3,1coll. −

γ

2

)
ρ5(t)− 1√

6
vp1(t)ρ13(t) +

1√
6
vp1(t)ρ15(t)

+

√
3

2
vc1(t)ρ17(t)−

√
3

2
vp2(t)ρ19(t), (A.5)

∂tρ7(t) = −
√

5

3
vp2(t)ρ1(t) + vp2(t)ρ4(t) +

(
−γ(1)3,2coll. −

γ

2

)
ρ7(t)− 1√

30
vp2(t)ρ13(t) +

√
7

10
vp2(t)ρ16(t)

+

√
3

10
vc2(t)ρ17(t) +

√
3

10
vp1(t)ρ19(t), (A.6)

∂tρ9(t) = vc1(t)ρ2(t)−
√

5

3
vc1(t)ρ3(t) +

(
−γ(1)4,1coll. −

γ

2

)
ρ9(t) +

√
7

10
vc1(t)ρ14(t)− 1√

30
vc1(t)ρ15(t)
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+

√
3

10
vp1(t)ρ17(t) +

√
3

10
vc2(t)ρ19(t), (A.7)

∂tρ11(t) = −vc2(t)ρ2(t) + vc2(t)ρ4(t) +
(
−γ(1)4,2coll. −

γ

2

)
ρ11(t) +

√
7

10
vc2(t)ρ14(t)−

√
7

10
vc2(t)ρ16(t)

+

√
3

10
vp2(t)ρ17(t)−

√
3

10
vc1(t)ρ19(t), (A.8)

∂tρ13(t) =

√
2

3
vp1(t)ρ5(t) +

√
2

15
vp2(t)ρ7(t)− γ(2)1,1coll.ρ13(t)− γ

12
ρ15(t) +

1

4

√
7

3
γρ16(t) +

γ

2
ρ19(t)

− 6√
5
vp2(t)ρ25(t), (A.9)

∂tρ14(t) = −
√

14

5
vc1(t)ρ9(t)−

√
14

5
vc2(t)ρ11(t)− γ(2)2,2coll.ρ14(t) +

1

4

√
7

3
γρ15(t) +

γ

4
ρ16 +

1

2

√
7

3
γρ19(t)

−6

√
2

35
vc2(t)ρ21(t) + 2

√
3

35
vc1(t)ρ23(t), (A.10)

∂tρ15(t) = −
√

2

3
vp1(t)ρ5(t) +

√
2

15
vc1(t)ρ9(t) + (−γ(2)3,3coll. − γ)ρ15(t)− 6√

5
vc1(t)ρ23(t), (A.11)

∂tρ16(t) = −
√

14

5
vp2(t)ρ7(t) +

√
14

5
vc2(t)ρ11(t) + (−γ(2)4,4coll. − γ)ρ16(t) + 6

√
2

35
vc2(t)ρ21(t) + 2

√
3

35
vp2(t)ρ25(t),

(A.12)

∂tρ17(t) = −
√

3

2
vc1(t)ρ5(t)−

√
3

10
vc2(t)ρ7(t)−

√
3

10
vp1(t)ρ9(t)−

√
3

10
vp2(t)ρ11(t)− γ(2)2,1coll.ρ17(t)

+

√
6

5
vp2(t)ρ21(t)− 1√

5
vp1(t)ρ23(t)− 1√

5
vc2(t)ρ25(t), (A.13)

∂tρ19(t) =

√
3

2
vp2(t)ρ5(t)−

√
3

10
vp1(t)ρ7(t)−

√
3

10
vc2(t)ρ9(t) +

√
3

10
vc1(t)ρ11(t) + (−γ(2)4,3coll. − γ)ρ19(t)

−
√

6

5
vc1(t)ρ21(t)− 1√

5
vc2(t)ρ23(t)− 1√

5
vp1(t)ρ25(t), (A.14)

∂tρ21(t) = 3

√
2

35
vc2(t)ρ14(t)− 3

√
2

35
vc2(t)ρ16 −

√
6

5
vp2(t)ρ17(t) +

√
6

5
vc1(t)ρ19(t) +

(
−γ(3)2,4coll. −

γ

2

)
ρ21(t)

+

√
2

7
vc2(t)ρ27(t)−

√
2

7
vc2(t)ρ28(t), (A.15)

∂tρ23(t) = −
√

3

35
vc1(t)ρ14(t) +

3√
5
vc1(t)ρ15(t) +

1√
5
vp1(t)ρ17(t) +

1√
5
vc2(t)ρ19(t) +

(
−γ(3)4,1coll. −

γ

2

)
ρ23(t)

+2

√
3

7
vc1(t)ρ27(t), (A.16)

∂tρ25(t) =
3√
5
vp2(t)ρ13(t)−

√
3

35
vp2(t)ρ16 +

1√
5
vc2(t)ρ17(t) +

1√
5
vp1(t)ρ19 +

(
−γ(3)4,2coll. −

γ

2

)
ρ25(t)

+2

√
3

7
vp2(t)ρ28(t) (A.17)

∂tρ27(t) = −2

√
2

7
vc2(t)ρ21(t)− 4

√
3

7
vc1(t)ρ23(t) + (−γ − γ(4)2,2coll.)ρ27(t)− 1

3
γρ28(t), (A.18)

∂tρ28(t) = 2

√
2

7
vc2(t)ρ21(t)− 4

√
3

7
vp2(t)ρ25(t) + (−γ − γ(4)4,4coll.)ρ28(t). (A.19)
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