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Above the upper critical dimension dc the Ising model is simulated on the Creutz cellular automaton. The

values of a new critical exponent � are obtained by using the simulations for the order parameter and the mag-
netic susceptibility. At d = 4, 5, 6, 7, 8, the values of the new critical exponent � are 0.9904(16), 1.2721(2),
1.4806(24), 1.7626(17), 1.9997(50) for the order parameter, respectively, while those 1.0415(13), 1.2987(27),
1.5133(1), 1.7741(1), 2.0133(28) are for the magnetic susceptibility in the same order. The computed values
of the new critical exponent � are in agreement with theoretical values.
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1. Introduction

The effect of dimensionality on phase transitions
should be investigated because the d-dimensional Ising
model is not directly applicable to real magnetic sys-
tems [1]. In fact, in Euclidean quantum field theory,
the 4D Ising model describes the physical dimension. In
higher dimension and/or higher lattice size, the simula-
tion of the Ising model by the conventional Monte Carlo
method becomes impractical and the algorithms need to
be faster. The Creutz cellular automaton [2, 3] does
not require high-quality random numbers, it is an order
of magnitude faster than the conventional Monte Carlo
method and compared to the Q2R cellular automaton [4],
it has the advantage of fluctuating internal energy from
which the specific heat can be computed.

It is well known that standard form of the hyperscaling
relation, i.e., νd = 2−α, is valid at and below the upper
critical dimension d = dc; however, it fails above dc = 4.
Thus, it needs to be revised and it can be rewritten in
the following form [5]:

νd

�
= 2− α (1)

Here, the general hyperscaling relation is obtained for
all dimensions by the help of a new critical exponent
� (“koppa” [5, 6]). The exponent � is considered to be
1 at d ≤ dc because the standard hyperscaling relation
is valid there. This relation can be also represented by
νdc = 2 − α because it is valid for d = dc. As Eq. (1)
is considered, it is obviously seen that � = d/dc. This
exponent is also universal as the other exponents.

The conventional form for finite-size scaling (FSS) is
transformed above the upper critical dimension d = dc.
Let PL(t) represent an observable P measured for a sys-
tem of linear extent L at reduced temperature t. If
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P∞(t) ∼ |t|−ρ, conventional FSS posits that PL(t) ∼
Lρ/ν inside the scaling window [5, 7]. Above dc, how-
ever, this conventional form is replaced by

PL(t) ∼ L
�ρ
ν (2)

This is called the modified finite-size scaling (Q-FSS) to
distinguish it from the conventional form [6, 8, 9]. Thus,
Q-FSS contains information on the exponent � and can
be used to measure it.

The purpose of this study is to test Q-FSS relations
for the order parameter and the magnetic susceptibility
near the infinite-lattice critical temperature in d ≥ 4 di-
mensions on the Creutz cellular automaton. The new
critical exponent � for the order parameter and the mag-
netic susceptibility are obtained by analyzing the data
from the simulations of the Ising model on the Creutz
cellular automaton.

The simulations are carried out on the Creutz cellu-
lar automaton [2, 10] which has arisen as an alterna-
tive research tool for the Ising model investigations and
has simulated the Ising model in the dimensionalities
4 ≤ d ≤ 8 [11, 12].

This paper is organized as follows. The model is de-
scribed in Sect. 2, the results are discussed in Sect. 3,
and a conclusion is given in Sect. 4.

2. Model

The algorithm is readily generalized to any dimension
or other lattice structures. In general, n binary bits are
associated with each site of the lattice. The value for
each site is determined from its value and from those
of its nearest neighbors at the previous time step. The
updating rule, which defines a deterministic cellular au-
tomaton, is as follows: of the n binary bits on each site,
the first one is the Ising spin Bi. Its value may be “0”
or “1”. The Ising spin energy, or internal energy of the
lattice, HI , is given (in units of the nearest neighbor cou-
pling constant J) by [2, 3, 10, 11]:
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HI = −
∑
〈i,j〉

SiSj (3)

where Si = 2Bi − 1 and 〈ij〉 denotes the sum over all
nearest neighbor pairs of sites.

The next n−2 bits on each site represent the demon or
momentum variable conjugated to the spin. These n− 2
bits form an integer which can take on the values within
the interval (0, N =

∑n−2
i=1 2i−1). Denoting these bits

by D1i, D2i, . . . , Dni, we associate with them the kinetic
energy

HK = 4
∑
i

(D1ix20 +D2ix21 + . . .+Dnix2n−1) (4)

which is conserved; here HK is the kinetic energy of the
lattice. For a given total energy the system temperature
T (in units of J/kB where kB is the Boltzmann constant
and m is mass) is obtained from the average value of the
kinetic energy of a demon,

〈ED〉 =

∑N
m=0 (4m)e(−4m)/T∑N

m=0 e(−4m)/T
. (5)

The n-th bit associated with each site provides a checker-
board style updating because this bit gives the space-time
parity of the site. A checkerboard style updating aims to
get rid of the result of stating that any cellular automaton
rule which updates all spins simultaneously cannot sim-
ulate the Ising model and so it allows the simulations of
the Ising model on a cellular automaton. The black sites
of the checkerboard are updated and then their color is
changed into white; the white sites are changed into black
without being updated and vice versa.

The updating rules for the spin and the momentum
variables are as follows: for a site to be updated its spin
is flipped and the change in the Ising energy (internal en-
ergy) HI, is calculated. If this energy change is transfer-
able to or from the momentum variable associated with
this site, such that the total energy H is conserved, then
this change is done and the momentum is appropriately
changed. Otherwise the spin and the momentum are not
changed.

As the initial configuration, all the spins are taken or-
dered (up or down). The initial kinetic energy is given
to the lattice via the appropriate bits of the momentum
variables in the white sites randomly.

The simulations are carried out on simple hypercubic
lattices Ld of dimensionality d and linear dimension L
with periodic boundary conditions.

3. Results and discussion
The Privman–Fisher hypothesis for the singular part

of the free-energy density f (S)L (t, h) of a hypercubic finite
system Ld with periodic boundary conditions is adapted
for the Ising model in the critical dimension dC = 4, by
proposing the finite-size scaling function Y (x.y), correct
to leading logarithms as below [13]:

f
(S)
L (t, h) = L−dY (tL2 log1/6 L, hL3 log1/4 L),

t→ 0, h→ 0, L→∞, (6)
where t = (T − Tc)/Tc is the reduced temperature and

h is the external magnetic field. The order parameter
ML(t, h) and the magnetic susceptibility χL(t, h) are
obtained from Eq. (6) as below [13]:

ML (t, h) = −∂fL
∂h

=

L−
β
ν � log1/4 (L)U(tL2 log1/6 L, hL3 log1/4 L),

χL (t, h) = −∂
2fL
∂h2

=

L
γ
ν � log1/2 (L)V (tL2 log1/6 L, hL3 log1/4 L), (7)

where U, V are the corresponding finite size scaling
functions. For h = 0 and at T = Tc, they become the
following equations with a new critical exponent �:

ML (t) = L
−β�
ν log1/4 L, (8)

χL (t) = L
γ�
ν log1/2 L. (9)

At the critical temperature, the values of the order pa-
rameter and the magnetic susceptibility are determined
by using the data obtained from the simulations of the
Ising model on the Creutz cellular automaton. With
these values, the graphs are plotted for the order pa-
rameter and the magnetic susceptibility by using Eq. (8)
and Eq. (9) as seen in Fig. 1. The slopes of the graphs
are −β�/ν and Υ�/ν, respectively. Since the Ising model

Fig. 1. The modified finite-size scaling (Q-FSS) for
d = 4: (a) the order parameter M(L), (b) the magnetic
susceptibility χ(L) at Tc = 6.6802 for the finite-size lat-
tices with 4 ≤ L ≤ 22.
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in d ≥ 4 has β = 1/2, Υ = 1 and ν = 1/2, the new criti-
cal exponent � is 0.9904(16) for the order parameter and
1.0415(13) for the magnetic susceptibility (Table I, II).
Both the order parameter and the magnetic susceptibility
are 1.00 because � is equal to d/dc where dc = 4. Thus,
their theoretical values are in good agreement with the
values obtained from the data on the simulations.

In d ≥ 5 dimensions, the Q-FSS relations used in the
analysis are given below [5, 7, 12, 14]:

At T = Tc,

ML (t) = L
−β�
ν ∝ L

−d
4 (10)

and

χL(t) = L
γ�
ν ∝ L d

2 . (11)

TABLE I

The theoretical values and the values obtained from the
simulations of the Ising model on the Creutz cellular au-
tomaton for the new critical exponent � in the dimensions
4 ≤ d ≤ 8 for the order parameter.

Dimension (d)
−β�
ν

(this work)

Koppa �

(this work)
(β = 1

2
,Υ = 1,

ν = 1
2
)

Theoretical
value

of koppa �

(� = d
dc

)

4 -0.9904(16) 0.9904(16) 1.00
5 -1.2721(2) 1.2721(2) 1.25
6 -1.4806(24) 1.4806(24) 1.50
7 -1.7626(17) 1.7626(17) 1.75
8 -1.9997(50) 1.9997(50) 2.00

TABLE II

The theoretical values and the values obtained from the
simulations of the Ising model on the Creutz cellular au-
tomaton for the new critical exponent � in the dimensions
4 ≤ d ≤ 8 for the magnetic susceptibility.

Dimension (d)
Υ�
ν

(this work)

Koppa �

(this work)
(β = 1

2
,Υ = 1,

ν = 1
2
)

Theoretical
value

of koppa �

(� = d
dc

)

4 2.0830(13) 1.0415(13) 1.00
5 2.5974(27) 1.2987(27) 1.25
6 3.0265(1) 1.5133(1) 1.50
7 3.5481(1) 1.7741(1) 1.75
8 4.0265(28) 2.0133(28) 2.00

As previously done, the graphs of the data from the
simulations are plotted by using Eq. (10) and Eq. (11)
as seen in Fig. 2-5. The slopes of the graphs are con-
sidered to determine the new critical exponent �. For
the order parameter, � = 1.2721(2), � = 1.4806(24),
� = 1.7626(17), and � = 1.9997(50) when d is at
d = 5, 6, 7, 8, respectively (Table I). When studied on
the magnetic susceptibility, the new critical exponents
� are 1.2987(27), 1.5133(1), 1.7741(1), and 2.0133(28) in
order of d = 5, 6, 7, 8 (Table II). At d ≥ 5, the new critical
exponent is also expected to be equal to � = d/4. There-
fore, the theoretical values of � are � = 1.25, � = 1.50,

Fig. 2. The modified finite-size scaling (Q-FSS) for
d = 5: (a) the order parameter M(L), (b) the magnetic
susceptibility χ(L) at Tc = 8.7787 for the finite-size lat-
tices with 4 ≤ L ≤ 8.

Fig. 3. The modified finite-size scaling (Q-FSS) for
d = 6: (a) the order parameter M(L), (b) the magnetic
susceptibility χ(L) at Tc = 10.8348 for the finite-size
lattices with 4 ≤ L ≤ 12.
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Fig. 4. The modified finite-size scaling (Q-FSS) for
d = 7: (a) the order parameter M(L), (b) the magnetic
susceptibility χ(L) at Tc = 12.8690 for the finite-size
lattices with 4 ≤ L ≤ 8.

Fig. 5. The modified finite-size scaling (Q-FSS) for
d = 8: (a) the order parameter M(L), (b) the magnetic
susceptibility χ(L) at Tc = 14.8920 for the finite-size
lattices with 4 ≤ L ≤ 8.

� = 1.75 and � = 2.00 at d = 5, 6, 7, 8, respectively Ta-
ble I, II. It is seen that the theoretical values and the
values from the graphs agree with each other for both
the order parameter and the magnetic susceptibility.

4. Conclusions

It is well known that standard FSS is universal at and
below the upper critical dimension d = dc when hyper-
scaling holds and where the correlation length is com-
parable to the extent L of a system [15, 16]. Above dc,
the standard hyperscaling breaks down and dangerous
irrelevant variables occur. Thus, standard FSS needs to
be modified. At this point, there should be mentioned a
new critical exponent, denoted by �. Since it is universal,
� has similar notation as the critical exponents α, β, γ,
δ, η, and ν, this notation was standardized by Fisher in
the 1960s [6]. FSS is implemented by the substitution
t → L−�/ν instead of t → L−1/ν , and then this gives
the modified FSS or Q-FSS. In Q-FSS relations, the new
critical exponent � is equal to d/dc.

To interpret the results of the new critical exponent
� obtained from the simulations of the Ising model on
the Creutz cellular automaton, all the results are in good
agreement with its theoretical values. Certainly, there
are errors when the estimated values of � are compared
to the theoretical values of � for each dimension as are
in every study. This work shows that the new critical
exponent � is valid above the upper critical dimension.
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