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The KdV equation can be derived within the shallow water limit of the Euler equations. Over the last few
decades, this equation has been extended to include both higher order effects (KdV2) and an uneven river bottom.
Although this equation is not integrable and has only one conservation law, exact periodic and solitonic solutions
exist for the even bottom case. The method used to find them assumes the same functional forms as for KdV
solutions. The KdV2 equation imposes more constraints on the parameters of solutions. Quite unexpectedly, we
found two regions in m parameter space for periodic solutions. For the range of m close to one the cnoidal waves
are upright as expected, but are inverted in the m region close to zero which is a completely new feature. The
properties of exact solutions for KdV and KdV2 are compared. Numerical evolution of all the discussed exact
solutions to KdV2 is stable and confirms the properties of the analytic solutions.
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1. Introduction

One hundred and seventy years ago, Stokes pointed
out that waves described by nonlinear models can be pe-
riodic [1]. Although several related results followed, it
took half a century before the Korteveg–de Vries equa-
tion became widely known [2]. A competitive equation,
Boussinesq, was formulated in 1871. It is also the theme
of several recent papers [3, 4]. Another direction research
has gone in it including perpendicular dynamics in KdV,
e.g. [5].

The KdV equation is one of the most ubiquitous phys-
ical equations. It consists of the mathematically simplest
possible terms representing the interplay of nonlinearity
and dispersion. This simplicity may be one of the reasons
for success. Here we investigate this equation improved
as derived from the Euler inviscid and irrotational water
equations.

Just as for conventional KdV, two small parame-
ters are assumed: wave amplitude/depth a/H and
depth/wavelength squared (H/l)2. These dimensionless
expansion constants are called α and β. We take ex-
pansion one order higher. The new terms will then be
of second order. This procedure limits considerations to
waves for which the two parameters are small and com-
parable. Unfortunately, some authors tend to be careless
about this limitation.
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The next approximation to Euler’s equations for long
waves over a shallow riverbed is (η is the elevation above
a flat surface divided by H):

ηt + ηx + 3
2
αηηx + 1

6
βη3x − 3

8
α2η2ηx

+αβ ( 23
24
ηxη2x + 5

12
ηη3x) + 19

360
β2η5x = 0. (1)

In (1) and subsequently we use low indexes for derivatives(
ηnx ≡ ∂nη

∂xn

)
. This second order equation was called by

Marchant and Smyth [6, 7] the extended KdV. It was
also derived in a different way in [8] and [9, 10]. We
call it KdV2. It is not integrable. Not only is KdV2
non integrable, it only seems to have one conservation
law (volume or mass) [11, 12]. A simple derivation of
adiabatically conserved quantities can be found in [13].

Although by some appropriate scaling KdV2 can be
written in a simpler form (e.g. [14, 15]) we consider so-
lutions to the KdV2 in the form (1) for the following
reasons. KdV2 is a particular case of a more general
equation derived by us in the second order perturbation
approach to the Euler equations for the shallow water
problem with uneven bottom [9, 10]. This equation (see,
e.g., Eq. (35) in [9], Eq. (18) in [10] or Eq. (1) in [16]) con-
tains direct terms from bottom changes and was derived
in the second order perturbation approach with the as-
sumption that the third small parameter δ is of the same
order as α, β. This parameter is defined as the ratio
of bottom function amplitude to the mean water depth.
Since we use the solutions to KdV2 as initial conditions
to calculate numerical evolution of waves entering the re-
gions where bottom changes occur we prefer to use the
KdV2 equation in the form (1).

(1191)
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Many authors, e.g. [17, 18], argue that equations like
(1) can be transformed to an asymptotically equivalent
integrable form. The asymptotic equivalence means that
solutions of these equations converge to the same solution
when small parameters tend to zero. This approach was
first introduced with near-identity transformation (NIT)
by Kodama [19] and then used and generalized by many
others, e.g. [20–22]. However, NIT is an approximation
in which terms of higher order are neglected. Therefore,
for finite values of small parameters (α, β), solutions of
NIT-transformed integrable equation are not the same as
exact solutions.

The KdV equation, despite its success, is not a law
of nature. It is only an approximation of the first order
perturbation approach to the set of the Euler equations.
However, many authors seem to forget that applicability
of KdV is limited to α ≈ β � 1 and use it outside this
range. Some authors of mathematical papers on KdV
ignore constraints on KdV solutions which come from
the physical meaning of dimensionless variables.

The aim of this paper is twofold. First, we present
exact solutions to the KdV2 Eq. (1), which, as ob-
tained in the second order perturbation approach, should
be applicable to much larger values of α, β. Second,
we discuss the consequences of the constraints im-
posed on the coefficients of exact solutions. The results
of this paper complete our studies on the hypothe-
sis that KdV2 possesses exact solutions of the same
functional forms as KdV but with altered coefficients.
In Ref. [10] we have found exact soliton solutions
for KdV2 in the form η(x, t) = Asech(B(x − vt))2.
In Refs. [23, 24] we have constructed exact peri-
odic solutions to KdV2 in the form of superpositions
η±(x, t)=A

2

[
dn[By,m]2 ±

√
mcn[By,m]dn[By,m]

]
+ D,

where y = x−vt. In this paper we have found the cnoidal
solutions to KdV2 in the form η(x, t) = Acn[B(x −
vt),m]2 + D which have two branches. In the first one,
when the parameter m is close to 1, the usual cnoidal
waves similar to those which are solutions to KdV are
obtained. In the second, when the parameter m is close
to 0, the new, inverted cnoidal solutions are obtained.
In this case KdV fails since its solutions correspond for
m → 0 to very short waves which is in contradiction to
the long wave assumption basic for derivation of KdV
and KdV2. The inverted cnoidal solution of KdV2 found
in this paper is free of this contradiction.

The paper is organised as follows. In Sect. 2 standard
derivations of solitonic and periodic solutions to KdV
are reviewed, followed by a description of an algebraic
approach to KdV. In Sect. 3 the exact soliton solution to
KdV2 [10] is recalled with an additional constraint on the
dimensionless amplitude of the soliton. Exact periodic
solutions to KdV2 in the form of cn2 cnoidal functions
are derived in Sect. 4. Quite unexpectedly two branches
of solutions are found. Numerical evolution of several
examples of different solutions to KdV2 are presented in
Sect. 5. Section 6 contains conclusions.

2. KdV solutions

For further discussions of new properties of KdV2 so-
lutions we first briefly remind KdV solutions.

2.1. Standard approach
KdV equation is given by the first line of (1). For stan-

dard approach to derive exact solutions, see, e.g. [25, 26].
Here we will remind only some steps of these derivations
and the final results. Introducing new variable ξ = x−ct,
where c = 1 + αc1 and dividing KdV equation by α one
obtains an ODE equation

−c1ηξ +
3

2
ηηξ +

1

6

β

α
η3ξ = 0. (2)

Integration gives (r is an integration constant)

−c1η +
3

4
η2 +

1

6

β

α
η2ξ =

1

4
r. (3)

Then multiplication by ηξ and next integration yields
1

3

β

α
(ηξ)

2
= −η3 + 2c1η

2 + rη + s =: f (η) , (4)

where s is another integration constant. Then if solutions
are such that η(ξ) → 0 when ξ → ±∞ then r = s = 0.
In this case f(η) = η2(2c1 − η) and integration of (4) is
easily obtained with hyperbolic functions leading finally
to single soliton solution

η(x, t) = Asech2

[√
3α

4β
A
(
x− t

(
1 +

α

2
A
))]

. (5)

The amplitude A can, in principle, be arbitrary as long
as this is not in contradiction to the basic assumptions
for derivation of KdV.

The path to obtain exact periodic solutions is much
more involved. The most detailed discussion of this
problem is contained in [26]. Below, we remind only
few important steps and formulae. In general, inte-
gration constants can be nonzero. Then, assuming
that η1 < η2 < η3 are roots of polynomial f(η), the
polynomial can be written as

f(η) = −(η − y1)(η − y2)(η − y3). (6)
Real-valued solutions are possible when –η2 ≤ η ≤ η1,
only. Then solution of (4) can be found in the form

η(ξ) = η1 cos2 χ(ξ)− η2 sin2 χ(ξ). (7)
Then (4) takes form

4β

3α
χξ

2 = (η1 + η3)− (η1 + η2) sin2 χ. (8)

Denoting m = η1+η2
η1+η3

∈ [0, 1] and ∆2 = 4β
3α(η1+η3)

one
obtains from (4):

∆2χ2
ξ = 1−m sin2 χ. (9)

Integration yields
1

∆

∫ ξ

0

dξ̂ = ∓
∫ χ

0

dχ̂√
1−m sin2 χ̂

=⇒ ± ξ

∆
= F (χ|m),

(10)
where F (χ|m) is the incomplete elliptic integral of the
first kind. Since the inverse functions are

cosχ = cn
(
ξ

∆
|m
)
, sinχ = sn

(
ξ

∆
|m
)
, (11)
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then from (8) solution is obtained in the form

η(ξ) = −η2 + (η1 + η2)cn2
(
ξ

∆
|m
)
. (12)

In the next steps Dingemans [26] stresses the condi-
tions which supply additional relations between η1, η2, η3.
The first one is given by the periodicity of the cn2 func-
tion. The second condition requires that the mean free
surface elevation should coincide with the still water sur-
face and express the fluid’s incompressibility.

2.2. Algebraic approach
From theory of nonlinear differential equation it is

known, see, e.g. [27–30], that for some classes of such
equations exact solutions should exist in forms of either
hyperbolic or the Jacobi elliptic functions. It appears
that both KdV and KdV2 equations belong to these
classes. Therefore one can directly look for solutions of
these equations assuming a particular form of solution.
Our main goal is to find exact solutions of KdV2 equa-
tion. In order to introduce the reader to the algebraic
approach we begin with much simpler KdV case.
2.2.1. Single soliton solution

Soliton solution is assumed as (amplitude is set equal
to 1):

η(x, t) = Asech2[B(x− vt)] = Asech2(By), (13)
where y = x − vt. Substitution (13) into KdV (see
Eq. (36) limited to the first three terms) gives

−1

3
AB tanh(Bx)sech4(Bx)[G0 +G1 cosh(2Bx)]. (14)

Equation (14) is valid for any argument only when simul-
taneously

G0 = 3− 3v + 9αA− 10βB2 = 0, (15)

G1 = 3− 3v + 2βB2 = 0. (16)
This gives immediately

B2 =
3α

4β
A, v = 1 +

α

2
A, (17)

and solution coincides with (5).
Remark: It is clear from (17) that solutions exist for

arbitrary parameters α, β, provided both are small.
2.2.2. Periodic solution

In this case solution is postulated in the form of cnoidal
wave

η(x, t) = Acn2 (B (x− vt) ,m) +D. (18)
[Equivalently, instead of Jacobi elliptic cn function, dn
or sn Jacobi elliptic functions can be used.]

Note that the form (18) is identical with (12) when
A = η1 + η2 and D = −η2.

Then, substitution of (18) into KdV yields equation
analogous to (14):

1

3
ABcn sn dn

(
G0 +G1(cn)2

)
= 0. (19)

So, there must be
G0 = 4βB2 − 8βB2m− 9αD + 6v − 6 = 0, (20)

G1 = 12βB2m− 9αA = 0. (21)
Equation (21) implies

B2 =
3α

4β

A

m
. (22)

Volume conservation condition (details will be explained
later) determines

D = −A
m

(
E(m)

K(m)
+m− 1

)
. (23)

In formula (23), E(m) andK(m) are the complete elliptic
integral and the complete elliptic integral of the first kind,
respectively. Then from (20) one has

v = 1 +
αA

2m

(
2−m− 3

E(m)

K(m)

)
. (24)

Denoting

EK(m) := 2−m− 3
E(m)

K(m)
(25)

one obtains

D =
A

3m
[EK(m)− 2m+ 1] , (26)

v = 1 +
αA

2m
EK(m). (27)

The function EK(m) (see Fig. 1) is equal to zero for
m = ms ≈ 0.9611494753812

and reaches the value 1 for m = 1.

0.2 0.4 0.6 0.8 1.0
m

-1.0

-0.5

0.5

EK(m)

Fig. 1. Plot of the function EK(m) (25).

The limit m → 1 gives the single soliton solution dis-
cussed in previous subsection.

It is well known, see e.g. [31, 32], that cnoidal solutions
of KdV are not good approximation for short shallow
water waves. The limit m → 0 preserves finite B (or
finite wavelength ∼ 1/B) in (22) when the amplitude A
is proportional tom, only, that is, for infinitesimal waves.
In reverse, if A is finite then for m→ 0 or the wavelength
tends to zero (since B →∞). At the same time velocity
(27) tends to minus infinity, see Fig. 2.

3. Exact single soliton solution for KdV2

In Ref. [10] we found exact single solution for KdV2
assuming the same form of the solution as for KdV, that
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v

Fig. 2. Velocity (27) of KdV periodic solution (18) as
function ofm for α = 0.5, 0.3, 0.1 plotted with red, green
and blue lines, respectively. Coefficient A = 1.

is (13). Below we briefly remind that result. Insertion of
(13) into (1) gives (after some simplifications) equation
analogous to (14):

C0 + C2 sech2(By) + C4 sech4(By) = 0, (28)
which supplies three conditions on parameters of solution
formula

C0 = (1− v) +
2

3
B2β +

38

45
B4β2, (29)

C2 =
3Aα

4
−B2β +

11

4
AαB2β − 19

3
B4β2, (30)

C4 = −
(

1

8

)
(Aα)2 − 43

12
AαB2β +

19

3
B4β2. (31)

From Eq. (31), denoting z =
βB2

αA
we obtain

19

3
z2 − 43

12
z − 1

8
= 0 (32)

with roots

z1 =
43−

√
2305

152
≈ −0.033 < 0,

z2 =
43 +

√
2305

152
≈ 0.599 > 0. (33)

Inserting βB2 = αAz into (30) we have:

A =
z − 3

4

αz( 11
4 −

19
3 z)

> 0

for both z1 and z2.

Since z1 < 0 thus B is real only when z = z2, so in this
case

A =
0.242399

α
,

B2 =
α

β
Az2 =≈ 0.599

α

β
A ≈ 0.145137

β
. (34)

Then Eq. (29) determines velocity

v = 1 +
2

3
αAz2 +

38

45
(αAz2)2 ≈ 1.11455. (35)

These results are the same as in Sect. 4 of [10].

Comparing single soliton solutions for KdV and KdV2
we see the following differences:

• For KdV B =

√
0.75

α

β
, for KdV2 B ≈

√
0.6

α

β
.

This difference in B values means that the KdV2
soliton is a little wider than that of KdV (for the
same parameters α, β), see Fig. 3.

• For KdV v = 1 +
α

2
A,

for KdV2 v ≈ 1.11455 is fixed.

• KdV admits a one parameter family of solutions
(for instance A can be arbitrary). KdV2 imposes
one more condition on coefficients of the solution,
therefore parameters α, β of the equation, deter-
mine a single solution with parameters given by
Eqs. (34)–(35). Such kind of fixed soliton solutions
are sometimes called embedded solitons [16].

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

η(x, 0)

Fig. 3. Comparison of the profile of KdV soliton — red
dashed line with KdV2 soliton — blue line. Both curves
are obtained for the same value of the amplitude A = 1.

4. Exact periodic solutions for KdV2

We look for periodic nonlinear wave solutions of
KdV2 (1). Introduce y = x − vt. Then η(x, t) = η(y),
ηt = −vηy and Eq. (1) takes the form of an ODE

(1− v)ηy +
3

2
αηηy +

1

6
β η3y −

3

8
α2η2ηy

+αβ

(
23

24
ηyη2y +

5

12
ηη3y

)
+

19

360
β2η5y = 0. (36)

Now assume the periodic solution to be in the same
form as corresponding solution of KdV

η(y) = Acn2(By,m) +D, (37)
where A,B,D are yet unknown constants (m is the el-
liptic parameter). The constant D must ensure that the
volume of water is the same for all m.

Now we calculate all derivatives ηny entering (36). Us-
ing properties of the Jacobi elliptic functions and their
derivatives one can express them as functions of cn2. So
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ηy = 2ABcn[−sn dn] = −2Bcn sn dn, (38)

η2y = 2AB2 [1−m+ (4m− 2)cn2 − 3mcn4], (39)

η3y = 8AB3cn dn sn[1− 2m+ 3mcn2], (40)

η5y = −16AB5cn dn sn[(2− 17m+ 17m2)

+(30m− 60m2)cn2 + 45m2cn4]. (41)
Denote (36) as

E1 + E2 + E3 + E4 + E5 + E6 + E7 = 0, (42)
where (common factor CSD = (−2ABcn sn dn)):

E1 = (1− v)ηy = (1− v)CSD, (43)

E2 =
3

2
αηηy =

3

2
α(cn2 +D)CSD, (44)

E3 =
1

6
βη3x = −2

3
βB2 [1− 2m+ 3mcn2]CSD, (45)

E4 = −3

8
α2η2ηy = −3

8
α2(cn2 +D)2CSD, (46)

E5 =
23

24
αβηyη2y =

23

12
αβB2[1−m+ (4m− 2)cn2 − 3mcn4]CSD, (47)

E6 =
5

12
αβηη3y =

−5

3
αβB2(cn2 +D)[1− 2m+ 3mcn2]CSD, (48)

E7 =
19

360
β2η5x =

19

45
β2B4[(2− 17m+ 17m2)

+(30m− 60m2)cn2 + 45m2cn4]CSD. (49)
Then (42) becomes

(−2Bcn sn dn)[F0 + F1cn2 + F2cn4] = 0. (50)
Equation (50) is valid for arbitrary argument of cn2
when all three coefficients F0, F1, F2 vanish simultane-
ously. This gives us a set of three equations for the coef-
ficients v,B,D:

F0 = 690αAβB2(m− 1)− (βB2)2(2584m(m− 1)

+304) + 240βB2(1− 2m)− 60αD
(
10βB2(2m− 1)

+9
)

+ 135(αD)2 + 360(v − 1) = 0, (51)

F1 = 90αA
[
22βB2(1− 2m) + 3αD − 6

]
+120βB2m

[
38βB2(2m− 1) + 15αD + 6

]
= 0,(52)

F2 = 45
(
3α2A2 + 86αAβB2m− 152β2B4m2

)
= 0. (53)

Equations (51)–(53), supplemented by the volume con-
servation law, allow us to find all unknowns as functions
of the elliptic parameter m. Below we show these solu-
tions explicitly.

Now, denote z =
B2β

Aα
m. (54)

Then, Eq. (53) becomes identical with (32) and has the
same roots (33).

4.1. Periodicity and volume conservation

In principle, exact periodic solutions of KdV2 with
D = 0 exist. They make sense from a mathematical
point of view. For KdV case the derivation of such peri-
odic solutions is presented in Whitham’s book [25]. The
more careful derivation, presented by Dingemans [26],
stresses that periodic solutions should have profile up-
lifts and depressions with respect to the undisturbed wa-
ter level. Therefore the volume conservation condition is
crucial for obtaining proper physical solutions.

Volume conservation determines the value of D. Here
by mass conservation we mean that for each m the solu-
tion involves the same volume of water∫ L

0

(Acn2(By,m) +D)dy = 0.

Then

D = −A
L

∫ L

0

cn2(By,m)dy ≡ −A
L
I(L), (55)

where L is the wavelength. The periodicity condition im-
plies

cn2 (Bl,m) = cn2(0,m) =⇒ L =
2K(m)

B
, (56)

where K(m) is the complete elliptic integral of the first
kind. Hence

D = −A
L
I(L) =

− [E(am(2K(m)|m)|m) + (m− 1)K(m)]

2mK(m)
, (57)

where E(Θ|m) is the elliptic integral of the second kind
and am(x|m) is the Jacobi elliptic function amplitude.
Since

E(am(2K(m)|m)|m))

2K(m)
≡ E(m)

K(m)
, (58)

where E(m) is the complete elliptic integral, and (57)
simplifies to

D = −A
m

[
E(m)

K(m)
+m− 1

]
. (59)

The function
[
E(m)
K(m) +m− 1

]
is positive for m ∈ (0, 1)

and vanishes at m = 0 and m = 1. For m → 0 D
tends to −A2 which is in agreement with sinusoidal (cos-
inusoidal) limit of the solution, whereas for m → 1, D
tends to 0, the solution becomes a soliton.

4.2. Coefficients of the exact solutions to KdV2

Without any assumptions on m,α, β, other than 0 ≤
m ≤ 1 we obtained the set of four conditions (51)–(53)
and (59) on A,B,D, v and m. Since Eq. (53) admits two
values for z then we have to consider two different cases.
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4.2.1. Case z = z2 =
43 +

√
2305

152

Solving the set (51)–(53) and (59) for z = z2 one ob-
tains

A = A(m,α) =
3
(
51−

√
2305

)
m

37αEK(m)
≈ 0.2424

α

m

EK(m)

(60)

B = B(m,β) =

√
3
(
−14 +

√
2305

)
703βEK(m)

, (61)

D = D(m,α) =

(
51−

√
2305

)
37α

(
1− 2m− 1

EK(m)

)
, (62)

v = v(m) =
9439− 69

√
2305

5476

−
(
377197− 7811

√
2305

) (
m2 −m+ 1

)
520220EK(m)2

≈

1.11875− 0.00420523
(m2 −m+ 1)

EK(m)2
. (63)

Hence, B is real-valued only when EK(m) > 0 (see
Fig. 1), that is for

m > ms ≈ 0.9611494753812. (64)
Therefore, for this branch of solutions with z = z2, the
elliptic parameter m ∈ (ms, 1]. For m > ms, the ampli-
tude A > 0.

Notice that the velocity depends only on m.
The dependence of A,B,D, v on m for several cases of

α, β parameters is displayed in Figs. 4–7.

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
m

2

4

6

8

10

A(m, α)

Fig. 4. Amplitude A (60) as function of m for α =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.

Formulas (60)–(63) and Figs. 4–7 indicate that phys-
ically relevant solutions are obtained in a narrow range
of m close to 1. Only for such m values of A are real-
istic (not very big). This conclusion is strengthened by
the behaviour of velocity as function of m. Velocity is
positive for m > mv=0, where mv=0 ≈ 0.97357.

In Fig. 8 profiles of cnoidal KdV solutions and KdV2
solutions are compared for m close to 1 assuming the
same amplitude for both solutions.

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
m

1

2

3

4

5

B(m, β)

Fig. 5. Coefficient B (61) as function of m for β =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.
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-5
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-1

d(m, α)

Fig. 6. Coefficient D (62) as function of m for α =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.
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1
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Fig. 7. Velocity v (63) as function of m.

It is worth to emphasize that in the limit m → 1 co-
efficients of solutions (60)–(63) receive values known for
single soliton KdV2 solutions given in [10].
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1 2 3 4 5 6
x

-1

1

2

3

η

Fig. 8. Profiles of KdV2 solutions (red) and KdV so-
lutions (blue) for case m = 0.98 (solid) and m = 0.995
(dashed). All profiles are obtained with α = 0.5 and
β = 0.4. Amplitudes of KdV solutions are set to be
equal to amplitudes of KdV2 solutions.

4.2.2. Case z = z1 =
43−

√
2305

152

Now,

A =
3
(
51 +

√
2305

)
m

37αEK(m)
≈ 8.02787

m

αEK(m)
, (65)

B =

√
−

3
(
14 +

√
2305

)
703βEK(m)

, (66)

D =

(
51 +

√
2305

)
37α

(
1− 2m− 1

EK(m)

)
, (67)

v =
9439 + 69

√
2305

5476

−
(
377197 + 7811

√
2305

) (
m2 −m+ 1

)
520220EK(m)2

≈

2.32866− 1.44594

(
m2 −m+ 1

)
EK(m)2

. (68)

Figures 9–12 show the dependence of A,B,D, v on m for
several cases of α, β parameters for this branch of KdV2
solutions.

0.2 0.4 0.6 0.8
m

-20

-15

-10

-5

A(m, α)

Fig. 9. Amplitude A (65) as function of m for α =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.
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B(m, β)

Fig. 10. Coefficient B (66) as function of m for β =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.
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d(m, α)

Fig. 11. Coefficient D (67) as function of m for α =
0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta,
and red lines, respectively.
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Fig. 12. Velocity v (68) as function of m.

In this case physically reasonable values of |A| occur
only for m close to 0. Velocity stays positive for m <
mv=0, where mv=0 ≈ 0.50367. It is worth to note that
since A < 0, solutions are “inverted” cnoidal functions
(with crests down and troughs up). This is completely
new result.



1198 E. Infeld, A. Karczewska, G. Rowlands, P. Rozmej

These new solutions are, however, not much different
from usual cosine waves. In Fig. 13 the profile of the
inverted cnoidal wave, obtained in this branch with α =
0.3, β = 0.5 and m = 0.2, is compared with the cosine
wave of the same amplitude and wavelength.

1 2 3 4
x

-3

-2

-1

1

2

3

η

Fig. 13. Profiles of KdV2 solution (blue line) with the
cosine wave of the same amplitude and wavelength (red,
dashed line). The KdV2 solution corresponds to the
case α = 0.3, β = 0.5 and m = 0.2.

5. Numerical evolution

In order to check our analytic results we followed nu-
merically the evolution of several cnoidal waves. We used
the finite difference (FDM) code developed for KdV2 in
fixed frame (1) in our previous papers [9, 10]. In exam-
ples presented in this subsection we assume the initial
wave to be the exact cnoidal wave η(x, t) = Acn2[B(x−
vt),m] + D. The algorithm used was the Zabusky–
Kruskal one [33], modified in order to include additional
terms. The space derivatives of η(x, t) were calculated
numerically step by step from the grid values of the func-
tion and lower order derivatives by a nine-point central
difference formula. Calculations were performed on the
interval x ∈ [0, λ] with periodic boundary conditions of
N grid points. The time step ∆t was chosen as in [33],
i.e., ∆t ≤ (∆x)3/4. The calculations shown in this paper
used grids with N = 200. In calculations presented below
the number of time steps reached 107−−108. In all cases
the algorithm secures volume (mass) conservation up to
10–11 decimal digits. The precision of our model was
confirmed in our studies with the finite element method
(FDM) [34, 35].

An example of the motion of the normal cnoidal wave,
the solution of the KdV2 equation, obtained with numer-
ical evolution for α = 0.5, β = 0.4, m = 0.995 is shown
in Fig. 14. This is the same wave as that shown in Fig. 8
with the red dashed line.

The numerical solutions of normal cnoidal waves ob-
tained for the z = z1 branch are stable. The profile shown
by the open symbols in Fig. 14, obtained after 2.4× 107

time steps deviates from the analytic result by less than
10−5. Other tests made with initially perturbed solutions
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 0.4

 0.6

 0.8
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 1.6

 0  1  2  3  4  5  6  7

η(
x,

t)

x

n=0 n=1 n=2 n=3 n=4

Fig. 14. Time evolution of the normal cnoidal wave for
the case of parameters α = 0.5, β = 0.4, m = 0.995.
Profiles are displayed at time instants tn = ndt, where
dt = 1

4
T .
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Fig. 15. Time evolution of the inverted cnoidal wave i
for the case α = 0.3, β = 0.5 and m = 0.2. Profiles are
displayed at time instants tn = ndt, where dt = 1

4
T .

confirm their numerical stability. In these tests analytic
solutions (37) were perturbed by a cosine wave with the
amplitude of 1% of the cnoidal wave amplitude. Profiles
obtained after one period overlapped the initial profiles
within the line width. Numerical solutions are stable for
much longer time intervals, as well.

The same stability of numerical solutions is obtained
for inverted cnoidal waves. An example of the motion
of the inverted cnoidal solution to the KdV2 for z = z1
branch, obtained by numerical evolution, is presented in
Fig. 15. The displayed case corresponds to the wave with
α = 0.3, β = 0.5 and m = 0.2. This is the same wave as
that displayed with the solid line in Fig. 13. The devia-
tions of the profile obtained by the numerical evolution
of the inverted cnoidal solution after one period from the
analytic solution is again less than 10−5. Similarly to
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solutions belonging to the branch with z = z2 the in-
verted cnoidal solutions belonging to the z = z1 branch
are resistant to small perturbations of the initial condi-
tions. The motion is numerically stable for periods much
longer than T , as well.

6. Conclusions

From our study the following conclusions can be
drawn:

1. For extended Korteweg–de Vries equation exact so-
lutions, both solitonic and periodic exist. These
solutions have the same form as corresponding so-
lutions of KdV equations but with coefficients al-
tered.

2. KdV2 equation imposes severe limitations on its
exact solutions. Physically relevant periodic solu-
tions of KdV2 are related to two narrow intervals
of the m parameter. For m very close to 1, nor-
mal cnoidal waves are obtained. For m very close
to 0, inverted cnoidal waves are found. This is a
completely new result not present in the KdV case,
since KdV fails for small m values. In this case,
however, wave profiles given by KdV2 solutions are
not much different from a cosine function.
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